Skip to main content

Advertisement

Log in

Simultaneous voltammetric detection of glucose and lactate fluctuations in rat striatum evoked by electrical stimulation of the midbrain

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glucose and lactate provide energy for cellular function in the brain and serve as an important carbon source in the synthesis of a variety of biomolecules. Thus, there is a critical need to quantitatively monitor these molecules in situ on a time scale commensurate with neuronal function. In this work, carbon-fiber microbiosensors were coupled with fast-scan cyclic voltammetry to monitor glucose and lactate fluctuations at a discrete site within rat striatum upon electrical stimulation of the midbrain projection to the region. Systematic variation of stimulation parameters revealed the distinct dynamics by which glucose and lactate responded to the metabolic demand of synaptic function. Immediately upon stimulation, extracellular glucose and lactate availability rapidly increased. If stimulation was sufficiently intense, concentrations then immediately fell below baseline in response to incurred metabolic demand. The dynamics were dependent on stimulation frequency, such that more robust fluctuations were observed when the same number of pulses was delivered at a higher frequency. The rates at which glucose was supplied to, and depleted from, the local recording region were dependent on stimulation intensity, and glucose dynamics led those of lactate in response to the most substantial stimulations. Glucose fluctuated over a larger concentration range than lactate as stimulation duration increased, and glucose fell further from baseline concentrations. These real-time measurements provide an unprecedented direct comparison of glucose and lactate dynamics in response to metabolic demand elicited by neuronal activation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21(10):1133–45.

    CAS  PubMed  Google Scholar 

  2. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–58.

    CAS  PubMed  Google Scholar 

  3. Lennie P. The cost of cortical computation. Curr Biol. 2003;13(6):493–7.

    CAS  PubMed  Google Scholar 

  4. Attwell D, Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci. 2005;6(11):841–9.

    CAS  PubMed  Google Scholar 

  5. Kuhl DE, Metter EJ, Riege WH. Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F] fluorodeoxyglucose method. Ann Neurol. 1984;15(5):419–24.

    CAS  PubMed  Google Scholar 

  6. Hoyer S. Abnormalities of glucose metabolism in Alzheimer’s disease. Ann N Y Acad Sci. 1991;640(1):53–8.

    CAS  PubMed  Google Scholar 

  7. Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem. 1989;53(4):1083–8.

    CAS  PubMed  Google Scholar 

  8. Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol. 2014;5:919.

    PubMed  PubMed Central  Google Scholar 

  9. Goldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS, et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia. 2004;42(11):1447–58.

    PubMed  Google Scholar 

  10. Peppard RF, Martin WRW, Carr GD, Grochowski E, Schulzer M, Guttman M, et al. Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch Neurol. 1992;49(12):1262–8.

    CAS  PubMed  Google Scholar 

  11. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86(4):883–901.

    CAS  PubMed  Google Scholar 

  12. Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front Mol Neurosci. 2018;11:216.

    PubMed  PubMed Central  Google Scholar 

  13. van Hall G, Stømstad M, Rasmussen P, Jans Ø, Zaar M, Gam C, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–9.

    PubMed  Google Scholar 

  14. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Howseman A, Zeki S, editors. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1387):1155–63.

    CAS  Google Scholar 

  15. Tsacopoulos M, Magistretti P. Metabolic coupling between glia and neurons. J Neurosci. 1996;16(3):877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci. 1994;91(22):10625–9.

    CAS  PubMed  Google Scholar 

  17. Parkin MC, Hopwood SE, Boutelle MG, Strong AJ. Resolving dynamic changes in brain metabolism using biosensors and on-line microdialysis. TrAC Trends Anal Chem. 2003;22(8):487–97.

    CAS  Google Scholar 

  18. Cerdán S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, et al. The redox switch/redox coupling hypothesis. Neurochem Int. 2006;48(6–7):523–30.

    PubMed  Google Scholar 

  19. Killeen PR, Russell VA, Tannock R. Neuroenergetics. Curr Dir Psychol Sci. 2016;25(2):124–9.

    Google Scholar 

  20. Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235–49.

    CAS  PubMed  Google Scholar 

  21. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hertz L, Gibbs ME. What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem. 2009;109:10–6.

    CAS  PubMed  Google Scholar 

  23. Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. Brann D, editor. PLoS One. 2011;6(12):e28427.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Magistretti PJ, Pellerin L. Astrocytes couple synaptic activity to glucose utilization in the brain. Physiology. 1999;14(5):177–82.

    CAS  Google Scholar 

  25. Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist. 2004;10(1):53–62.

    CAS  PubMed  Google Scholar 

  26. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JDR, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun. 2015;6(1):6807.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nehlig A, Wittendorp-Rechenmann E, Dao LC. Selective uptake of [14 C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14 C-trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab. 2004;24(9):1004–14.

    CAS  PubMed  Google Scholar 

  28. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. 2019;365(6450):eaav9518.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Uehara T, Sumiyoshi T, Itoh H, Kurachi M. Dopamine D1 and D2 receptors regulate extracellular lactate and glucose concentrations in the nucleus accumbens. Brain Res. 2007;1133:193–9.

    CAS  PubMed  Google Scholar 

  30. Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent developments in carbon sensors for at-source electroanalysis. Anal Chem. 2019;91(1):27–43.

    CAS  PubMed  Google Scholar 

  31. Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. In vivo analysis with electrochemical sensors and biosensors. Anal Chem. 2017;89(1):300–13.

    CAS  PubMed  Google Scholar 

  32. Roberts JG, Lugo-Morales LZ, Loziuk PL, Sombers LA. Real-time chemical measurements of dopamine release in the brain. In: Kabbani N, editor. Dopamine [Internet]. Totowa: Humana Press; 2013 [cited 2019 Nov 19]. p. 275–94. Available from: https://doi.org/10.1007/978-1-62703-251-3_16

  33. Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem. 1997;69(4):1484–90.

    CAS  PubMed  Google Scholar 

  34. Rocchitta G, Secchi O, Alvau MD, Farina D, Bazzu G, Calia G, et al. Simultaneous telemetric monitoring of brain glucose and lactate and motion in freely moving rats. Anal Chem. 2013;85(21):10282–8.

    CAS  PubMed  Google Scholar 

  35. Smith SK, Lugo-Morales LZ, Tang C, Gosrani SP, Lee CA, Roberts JG, et al. Quantitative comparison of enzyme immobilization strategies for glucose biosensing in real-time using fast-scan cyclic voltammetry coupled with carbon-fiber microelectrodes. ChemPhysChem. 2018;19(10):1197–204.

    CAS  PubMed  Google Scholar 

  36. Lugo-Morales LZ, Loziuk PL, Corder AK, Toups JV, Roberts JG, McCaffrey KA, et al. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry. Anal Chem. 2013;85(18):8780–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith SK, Gosrani SP, Lee CA, McCarty GS, Sombers LA. Carbon-fiber microbiosensor for monitoring rapid lactate fluctuations in brain tissue using fast-scan cyclic voltammetry. Anal Chem. 2018;90(21):12994–9.

    CAS  PubMed  Google Scholar 

  38. Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, et al. Simultaneous voltammetric measurements of glucose and dopamine demonstrate the coupling of glucose availability with increased metabolic demand in the rat striatum. ACS Chem Neurosci. 2017;8(2):272–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Paxinos G, Watson C. Paxino’s and Watson’s the rat brain in stereotaxic coordinates. Seventh ed. Amsterdam; Boston: Elsevier/AP, Academic Press is an imprint of Elsevier; 2014. p. 1.

    Google Scholar 

  40. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, et al. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem. 2010;82(12):5205–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Syed ECJ, Grima LL, Magill PJ, Bogacz R, Brown P, Walton ME. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat Neurosci. 2016;19(1):34–6.

    CAS  PubMed  Google Scholar 

  42. Hamid AA, Frank MJ, Moore CI. Dopamine waves as a mechanism for spatiotemporal credit assignment [Internet]. Neuroscience. 2019 [cited 2020 Jan 3]. Available from:. https://doi.org/10.1101/729640.

  43. Howe MW, Tierney PL, Sandberg SG, Phillips PEM, Graybiel AM. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 2013;500(7464):575–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, et al. A selective role for dopamine in stimulus–reward learning. Nature. 2011;469(7328):53–7.

    CAS  PubMed  Google Scholar 

  45. Howe MW, Dombeck DA. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature. 2016;535(7613):505–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheer JF, Wassum KM, Sombers LA, Heien MLAV, Ariansen JL, Aragona BJ, et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci. 2007;27(4):791–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Roitman MF. Dopamine operates as a subsecond modulator of food seeking. J Neurosci. 2004;24(6):1265–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahapatra A. Overeating, obesity, and dopamine receptors. ACS Chem Neurosci. 2010;1(5):346–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wightman RM, Amatorh C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, et al. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience. 1988;25(2):513–23.

    CAS  PubMed  Google Scholar 

  50. Sombers LA, Beyene M, Carelli RM, Mark WR. Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci. 2009;29(6):1735–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheer JF, Aragona BJ, Heien MLAV, Seipel AT, Carelli RM, Wightman RM. Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron. 2007;54(2):237–44.

    CAS  PubMed  Google Scholar 

  52. Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Mark Wightman R, et al. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci. 2009;30(6):1117–27.

    PubMed  PubMed Central  Google Scholar 

  53. Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM. Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proc Natl Acad Sci. 2008;105(33):11957–62.

    CAS  PubMed  Google Scholar 

  54. Hyder F, Rothman DL, Bennett MR. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci. 2013;110(9):3549–54.

    CAS  PubMed  Google Scholar 

  55. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–38.

    PubMed  Google Scholar 

  56. Killeen PR, Russell VA, Sergeant JA. A behavioral neuroenergetics theory of ADHD. Neurosci Biobehav Rev. 2013;37(4):625–57.

    PubMed  Google Scholar 

  57. Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2012;32:1107–38.

    CAS  PubMed  Google Scholar 

  58. Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain: lactate shuttling does not satisfy stoichiometry. J Neurosci Res. 2017;95(11):2103–25.

    CAS  PubMed  Google Scholar 

  59. Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab. 2014;34(11):1736–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res. 2019;97(8):863–82.

    CAS  PubMed  Google Scholar 

  61. Fillenz M. The role of lactate in brain metabolism. Neurochem Int. 2005;47(6):413–7.

    CAS  PubMed  Google Scholar 

  62. Díaz-García CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 2017;26(2):361–374.e4.

    PubMed  PubMed Central  Google Scholar 

  63. Díaz-García CM, Yellen G. Neurons rely on glucose rather than astrocytic lactate during stimulation. J Neurosci Res. 2019;97(8):883–9.

    PubMed  Google Scholar 

  64. Adamantidis AR, Tsai H-C, Boutrel B, Zhang F, Stuber GD, Budygin EA, et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci. 2011;31(30):10829–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324(5930):1080–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. da Silva JA, Tecuapetla F, Paixão V, Costa RM. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature. 2018;554(7691):244–8.

    PubMed  Google Scholar 

  67. Saunders BT, Richard JM, Margolis EB, Janak PH. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat Neurosci. 2018;21(8):1072–83.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Samantha K. Smith, Gregory S. McCarty, Erica M. Cullison, Brian M. Horman, Heather B. Patisaul, and Nathan W. Burnham for equipment, technical assistance, and helpful discussion. Lastly, we would like to thank Pinnacle Technology Inc. for helpful discussion.

Funding

This work was funded by the National Institute of Health (R43MH119870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Sombers.

Ethics declarations

Conflict of interest

L.A. Sombers is working with Pinnacle Technologies, Inc., to commercialize these probes through a grant funded by the National Institutes of Health (R43MH119870). The other authors declare no conflict of interest.

Human and animal rights

All animal procedures followed Institutional Animal Care and Use Committee (IACUC) and North Carolina State University protocols.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forderhase, A.G., Styers, H.C., Lee, C.A. et al. Simultaneous voltammetric detection of glucose and lactate fluctuations in rat striatum evoked by electrical stimulation of the midbrain. Anal Bioanal Chem 412, 6611–6624 (2020). https://doi.org/10.1007/s00216-020-02797-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02797-0

Keywords

Navigation