Skip to main content

Advertisement

Log in

Identification of a resonance Raman marker for cytochrome to monitor stress responses in Escherichia coli

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopy and resonance Raman spectroscopy are widely used to study bacteria and their responses to different environmental conditions. In the present study, the identification of a novel resonance Raman peak for Escherichia coli, recorded with 633 nm laser excitation is discussed. A peak at 740 cm−1 is observed exclusively with 633 nm excitation but not with 514 nm or 785 nm excitation. This peak is absent in the lag phase but appears in the log phase of bacterial growth. The intensity of the peak increases at high temperature (45 °C) compared with growth at low temperature (25 °C) or the physiological temperature (37 °C). Although osmotic stress lowered bacterial growth, the intensity of this peak was unaffected. However, treatment with chemical uncouplers of oxidative phosphorylation resulted in significantly lower intensity of this Raman band, indicating its possible involvement in respiration. Cytochromes, a component of bacterial respiration‚ can show resonance enhancement at 633 nm due to the presence of a shoulder in that region depending on the type and conformation of cytochrome. Therefore, the peak intensity was monitored in different genetic mutants of E. coli lacking cytochromes. This peak is absent in the Escherichia coli mutant lacking cydB, but not ccmE, demonstrating the contribution of cytochrome bd subunit II in the peak’s origin. In future, this newly found cytochrome marker can be used for biochemical assessment of bacteria exposed to various conditions. Overall, this finding opens the scope for use of red laser excitation in resonance Raman in monitoring stress and respiration in bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol. 2014;12(2):101–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Willey, Sherwood, Woolverton. Prescott’s principles of microbiology. Boston: McGraw-Hill Higher Education; 2009.

    Google Scholar 

  3. Kirchman D, Ducklow H, Mitchell R. Estimates of bacterial growth from changes in uptake rates and biomass. Estimates of bacterial growth from changes in uptake rates and biomass. Appl Environ Microbiol. 1982;44(6):1296–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh B, Gautam R, Kumar S, Vinay Kumar BN, Nongthomba U, Nandi D, et al. Application of vibrational microspectroscopy to biology and medicine. Curr Sci. 2012;102(2):232–44.

    CAS  Google Scholar 

  5. Sil S, Gautam R, Umapathy S. Applications of Raman and infrared microscopy to materials and biology. In: Molecular and laser spectroscopy: advances and applications. Gupta V. P., Elsevier, 2018, ch. 6, p. 117–146.

  6. Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018;8(46):25888–908.

    CAS  Google Scholar 

  7. Gautam R, Vanga S, Madan A, Gayathri N, Nongthomba U, Umapathy S. Raman spectroscopic studies on screening of myopathies. Anal Chem. 2015;87(4):2187–94.

    CAS  PubMed  Google Scholar 

  8. Dutta A, Gautam R, Chatterjee S, Ariese F, Sikdar SK, Umapathy S. Ascorbate protects neurons against oxidative stress: a Raman microspectroscopic study. ACS Chem Neurosci. 2015;6(11):1794–801.

    CAS  PubMed  Google Scholar 

  9. Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K, Umapathy S. ChemInform abstract: Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. ChemInform. 2016;47(21). https://doi.org/10.1002/chin.201621278.

  10. Kumar S, Visvanathan A, Arivazhagan A, Santhosh V, Somasundaram K, Umapathy S. Assessment of radiation resistance and therapeutic targeting of cancer stem cells: a Raman spectroscopic study of glioblastoma. Anal Chem. 2018;90(20):12067–74.

    CAS  PubMed  Google Scholar 

  11. Novelli-Rousseau A, Espagnon I, Filiputti D, Gal O, Douet A, Mallard F, et al. Culture-free antibiotic-susceptibility determination from single-bacterium Raman spectra. Sci Rep. 2018;8(1):1–12.

    CAS  Google Scholar 

  12. Kumar S, Matange N, Umapathy S, Visweswariah SS. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy. FEMS Microbiol Lett. 2015;362(3):1–6.

    CAS  PubMed  Google Scholar 

  13. Sil S, Mukherjee R, Kumar NS, Aravind S, Kingston J, Singh UK. Detection and classification of bacteria using Raman spectroscopy combined with multivariate analysis. Def Life Sci J. 2017;2(4):435–41.

  14. Stöckel S, Kirchhoff J, Neugebauer U, Rösch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2016;47(1):89–109.

    Google Scholar 

  15. Kumar S, Gopinathan R, Chandra GK, Umapathy S, Saini DK. Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy. Anal Bioanal Chem. 2020;412:2505–16.

    CAS  PubMed  Google Scholar 

  16. Rösch P, Harz M, Schmitt M, Peschke KD, Ronneberger O, Burkhardt H, et al. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol. 2005;71(3):1626–37.

    PubMed  PubMed Central  Google Scholar 

  17. Hlaing MM, Dunn M, Stoddart PR, McArthur SL. Raman spectroscopic identification of single bacterial cells at different stages of their lifecycle. Vib Spectrosc. 2016;86:81–9.

    CAS  Google Scholar 

  18. Spiro TG. Resonance Raman spectroscopy: a new structure probe for biological chromophores. Acc Chem Res. 1974;10:339–44.

    Google Scholar 

  19. Morris MD, Wallan DJ. Resonance Raman spectroscopy. Current applications and prospects. Anal Chem. 1979;51(2):182A–92A.

    CAS  Google Scholar 

  20. Li J, Kitagawa T. Resonance Raman spectroscopy. Methods Mol Biol. 2014;1146:377–400.

    CAS  PubMed  Google Scholar 

  21. Jehlička J, Edwards HGM, Oren A. Raman spectroscopy of microbial pigments. Appl Environ Microbiol. 2014;11:3286–95.

    Google Scholar 

  22. Fodor SPA, Spiro TG. Ultraviolet resonance Raman spectroscopy of DNA with 200-266-nm laser excitation. J Am Chem Soc. 1986;108(12):3198–205.

    CAS  Google Scholar 

  23. McCreery R.L. Raman spectroscopy for chemical analysis. New York: Wiley. Meas Sci Technol. 2001;12(5):653.

  24. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome Bd respiratory oxygen reductases. Biochim Biophys Acta Bioenerg. 2011;1807(11):1398–413.

    CAS  Google Scholar 

  25. Mukherjee R, Verma T, Nandi D, Umapathy S. Understanding the effects of culture conditions in bacterial growth: a biochemical perspective using Raman microscopy. J Biophotonics. 2020;13(1):e201900233.

    CAS  PubMed  Google Scholar 

  26. Verma T, Bhaskarla C, Sadhir I, Sreedharan S, Nandi D. Non-steroidal anti-inflammatory drugs, acetaminophen and ibuprofen, induce phenotypic antibiotic resistance in Escherichia coli: roles of MarA and AcrB. FEMS Microbiol Lett. 2018;365(22):fny251.

    CAS  Google Scholar 

  27. Bhaskarla C, Das M, Verma T, Kumar A, Mahadevan S, Nandi D. Roles of Lon protease and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology. 2016;162(5):764–76.

    CAS  PubMed  Google Scholar 

  28. Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K, Umapathy S. Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev. 2016;45(7):1879–900.

    CAS  PubMed  Google Scholar 

  29. Maier RM, Pepper IL. Bacterial growth. In: Environmental microbiology. Third ed. Cambridge: Academic Press; 2015. p. 37–56.

    Google Scholar 

  30. Jordan RC, Jacobs SE. The effect of temperature on the growth of bacterium Coli at PH 7–0 with a constant food supply. J Gen Microbiol. 1947;1:121–36.

    CAS  PubMed  Google Scholar 

  31. Drysdale GR, Cohn M. On the mode of action of 2,4-dinitrophenol in uncoupling oxidative phosphorylation. J Biol Chem. 1958;233(6):1574–7.

    CAS  PubMed  Google Scholar 

  32. Verma T, Podder S, Mehta M, Singh S, Singh A, Umapathy S, et al. Raman spectroscopy reveals distinct differences between two closely related bacterial strains, Mycobacterium indicus pranii and Mycobacterium intracellulare. Anal Bioanal Chem. 2019;411(30):7997–8009.

    CAS  PubMed  Google Scholar 

  33. Vinay Kumar BN, Kampe B, Rösch P, Popp J. Characterization of carotenoids in soil bacteria and investigation of their photodegradation by UVA radiation via resonance Raman spectroscopy. Analyst. 2015;140(13):584–4593.

    Google Scholar 

  34. Shashilov VA, Lednev IK. 2D correlation deep UV resonance Raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J Am Chem Soc. 2008;130(13):309–17.

    CAS  PubMed  Google Scholar 

  35. Cook GM, Loder C, Søballe B, Stafford GP, Membrillo-Hernández J, Poole RK. A factor produced by Escherichia coli K-12 inhibits the growth of E. coli mutants defective in the cytochrome Bd quinol oxidase complex: enterochelin rediscovered. Microbiology. 1998;144(12):3297–308.

    CAS  PubMed  Google Scholar 

  36. Meyer DJ, Jones CW. Distribution of cytochromes in bacteria: relationship to general physiology. Int J Syst Bacteriol. 1973;23(4):459–67.

    Google Scholar 

  37. Sun J, Osborne JP, Kahlow MA, Kaysser TM, Gennis RB, Loehr TM. Resonance Raman studies of Escherichia coli cytochrome Bd oxidase. Selective enhancement of the three heme chromophores of the “as-isolated” enzyme and characterization of the cyanide adduct. Biochemistry. 1995;34(38):12144–51.

    CAS  PubMed  Google Scholar 

  38. Hu S, Spiro TG, Morris IK, Singh JP, Smith KM. Complete assignment of cytochrome c resonance Raman spectra via enzymatic reconstitution with isotopically labeled hemes. J Am Chem Soc. 1993;115(26):12446–58.

    CAS  Google Scholar 

  39. Teng L, Wang X, Wang X, Gou H, Ren L, Wang T, et al. Label-free, rapid and quantitative phenotyping of stress response in E. coli via Ramanome. Sci Rep. 2016;6:34359.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ren Y, Ji Y, Teng L, Zhang H. Using Raman spectroscopy and chemometrics to identify the growth phase of Lactobacillus casei Zhang during batch culture at the single-cell level. Microb Cell Factories. 2017;16(1):1–10.

    CAS  Google Scholar 

  41. Georgiou CD, Dueweke TJ, Gennis RB. Regulation of expression of the cytochrome-D terminal oxidase in Escherichia coli is transcriptional. J Bacteriol. 1988;170(2):961–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Borisov VB, Forte E, Davletshin A, Mastronicola D, Sarti P, Giuffrè A. Cytochrome Bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress. FEBS Lett. 2013;587(14):2214–8.

    CAS  PubMed  Google Scholar 

  43. Amato P, Christner BC. Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol. 2009;75(3):711–8.

    CAS  PubMed  Google Scholar 

  44. Soini J, Falschlehner C, Mayer C, Böhm D, Weinel S, Panula J, et al. Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microb Cell Factories. 2005;4(1):9.

    Google Scholar 

  45. Jesse HE, Nye TL, McLean S, Green J, Mann BE, Poole RK. Cytochrome Bd-I in Escherichia coli is less sensitive than cytochromes Bd-II or Bo″ to inhibition by the carbon monoxide-releasing molecule, CORM-3 N-acetylcysteine reduces CO-RM uptake and inhibition of respiration. Biochim Biophys Acta, Proteins Proteomics. 2013;1834(9):1693–703.

    CAS  Google Scholar 

  46. Kahlow MA, Loehr TM, Zuberi TM, Gennis RB. Identification of a ferryl intermediate of Escherichia coli cytochrome d terminal oxidase by resonance Raman spectroscopy. Biochemistry. 1991;30(49):11485–9.

    CAS  PubMed  Google Scholar 

  47. Wood BR, Caspers P, Puppels GJ, Pandiancherri S, Mcnaughton D. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem. 2007;387(5):1691–703.

    CAS  PubMed  Google Scholar 

  48. Spiro TG, Strekas TC. Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J Am Chem Soc. 1974;96(2):338–45.

    CAS  PubMed  Google Scholar 

  49. Kusić D, Kampe B, Ramoji A, Neugebauer U, Rösch P, Popp J. Raman spectroscopic differentiation of planktonic bacteria and biofilms. Anal Bioanal Chem. 2015;407(22):6803–13.

    PubMed  Google Scholar 

  50. Carey PR, Whitmer GR, Yoon MJ, Lombardo MN, Pusztai-Carey M, Heidari-Torkabadi H, et al. Measuring drug-induced changes in metabolite populations of live bacteria: real time analysis by Raman spectroscopy. J Phys Chem B. 2018;122(24):6377–85.

    CAS  PubMed  Google Scholar 

  51. Espagnon I, Ostrovskii D, Mathey R, Dupoy M, Joly PL, Novelli-Rousseau A, et al. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy. J Biomed Opt. 2014;19(2):027004.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ms. Harshitha A for helping in some experiments. In addition, the infrastructural support from DBT-IISc program, DST-FIST, and UGC CAS/SAP is greatly appreciated. The authors acknowledge central facility, Department of Biochemistry, for the use of some instruments.

Funding

The authors thank the Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India, for financial support. SU acknowledges the J. C. Bose Fellowship from DST. RM and TV thank the Centre for Science and Industrial Research (CSIR, India) and IISc for research fellowships respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipankar Nandi or Siva Umapathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research does not involve human participants and animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 535 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Verma, T., Nandi, D. et al. Identification of a resonance Raman marker for cytochrome to monitor stress responses in Escherichia coli. Anal Bioanal Chem 412, 5379–5388 (2020). https://doi.org/10.1007/s00216-020-02753-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02753-y

Keywords