Quantification of global DNA methylation level using 5-methylcytosine dioxygenase


DNA methylation is one of the best studied epigenetic modifications. Alteration of the global DNA methylation level occurs in abnormal cells, such as those associated with cancers and Alzheimer’s disease. Several assays are used to determine the global DNA methylation level, including the bisulfite-based assay, high-performance liquid chromatography (HPLC)–based assay, enzyme-linked immunosorbent assay (ELISA), and methyl acceptance assay. However, these assays require several cumbersome steps to detect methylation levels. We developed a simpler enzymatic assay for the quantification of the global DNA methylation level using the Ten-eleven translocation (TET) protein. TET proteins mediate DNA demethylation through the oxidation of 5-methylcytosine (5mC) in CpG in mammalian cells. Succinate is produced during this oxidation reaction, and the amount of succinate produced correlates to the global DNA methylation level. The catalytic domain of the TET2 was expressed in Escherichia coli (E. coli), and the purified TET2 catalytic domain was reacted with human genomic DNA. The reaction solution was used for enzymatic succinate quantification with no purification step. The results showed that the succinate produced through TET-mediated oxidation increased with increasing global DNA methylation levels in human genomic DNA, which was determined using the bisulfite method. These results show that the global DNA methylation level is quantifiable by measuring the amount of succinate produced by the TET2-mediated 5mC oxidation reaction.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Varriale A. DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int J Evol Biol. 2014;2014:475981.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293:1068–70.

    CAS  PubMed  Google Scholar 

  3. 3.

    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    CAS  Google Scholar 

  4. 4.

    Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317:1760–4.

    CAS  PubMed  Google Scholar 

  5. 5.

    Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450:908–12.

    CAS  PubMed  Google Scholar 

  6. 6.

    Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.

    CAS  PubMed  Google Scholar 

  7. 7.

    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286:35334–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009;8:1698–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    An J, Rao A, Ko M. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med. 2017;49:e323.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Xu C, Bian C, Lam R, Dong A, Min J. The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain. Nat Commun. 2011;2:227.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Long HK, Blackledge NP, Klose RJ. ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans. 2013;41:727–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ko M, An J, Bandukwala HS, Chavez L, Aijö T, Pastor WA, et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature. 2013;497:122–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kuiper C, Vissers MCM. Ascorbate as a co-factor for Fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol. 2014;4:359.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, Zhao C, et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc. 2013;135:10396–403.

    CAS  PubMed  Google Scholar 

  18. 18.

    Young JI, Zuchner S, Wang G. Regulation of the epigenome by vitamin C. Annu Rev Nutr. 2015;35:545–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998;395:89–93.

    CAS  PubMed  Google Scholar 

  20. 20.

    Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene. 2004;23:8841–6.

    CAS  PubMed  Google Scholar 

  21. 21.

    Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66:8462–9468.

    CAS  PubMed  Google Scholar 

  22. 22.

    Cash HL, Tao L, Yuan J-M, Marsit CJ, Houseman EA, Xiang Y-B, et al. LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese. Int J Cancer. 2012;130:1151–9.

    CAS  PubMed  Google Scholar 

  23. 23.

    Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One. 2014;9:e109478.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry. 2012;2:e132.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Coppieters N, Dieriks BV, Lill C, Faull RL, Curtis MA, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging. 2014;35:1334–44.

    CAS  PubMed  Google Scholar 

  26. 26.

    Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Baba Y, Huttenhower C, Nosho K, Tanaka N, Shima K, Hazra A, et al. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010;9:125.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim JS, Chung WC, Lee KM, Paik CN, Lee KS, Kim HJ, et al. Association between genetic instability and Helicobacter pylori infection in gastric epithelial dysplasia. Gastroenterol Res Pract. 2012;2012:360929.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Armstrong KM, Bermingham EN, Bassett SA, Treloar BP, Roy NC, Barnett MP. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol J. 2011;6:113–7.

    CAS  PubMed  Google Scholar 

  31. 31.

    Kremer D, Metzger S, Kolb-Bachofen V, Kremer D. Quantitative measurement of genome-wide DNA methylation by a reliable and cost-efficient enzyme-linked immunosorbent assay technique. Anal Biochem. 2012;422:74–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Balaghi M, Wagner C. DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun. 1993;193:1184–90.

    CAS  PubMed  Google Scholar 

  33. 33.

    Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72:998–1003.

    CAS  PubMed  Google Scholar 

  34. 34.

    Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr. 2007;86:1179–86.

    CAS  PubMed  Google Scholar 

  35. 35.

    Yoshida W, Baba Y, Karube I. Global DNA methylation detection system using MBD-fused luciferase based on bioluminescence resonance energy transfer assay. Anal Chem. 2016;88:9264–8.

    CAS  PubMed  Google Scholar 

  36. 36.

    Baba Y, Karube I, Yoshida W. Global DNA methylation level monitoring by methyl-CpG binding domain-fused luciferase. Anal Lett. 2019;52:754–60.

    CAS  Google Scholar 

  37. 37.

    Yoshida W, Baba Y, Banzawa K, Karube I. A quantitative homogeneous assay for global DNA methylation levels using CpG-binding domain- and methyl-CpG-binding domain-fused luciferase. Anal Chim Acta. 2017;990:168–73.

    CAS  PubMed  Google Scholar 

  38. 38.

    Taka N, Karube I, Yoshida W. Direct detection of hemi-methylated DNA by SRA-fused luciferase based on bioluminescence resonance energy transfer. Anal Lett. 2019;52:1258–67.

    CAS  Google Scholar 

  39. 39.

    Baba Y, Yamamoto K, Yoshida W. Multicolor bioluminescence resonance energy transfer assay for quantification of global DNA methylation. Anal Bioanal Chem. 2019;411:4765–73.

    CAS  PubMed  Google Scholar 

  40. 40.

    Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M, et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell. 2013;155:1545–55.

    CAS  PubMed  Google Scholar 

  41. 41.

    Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, et al. Structural insight into substrate preference for TET-mediated oxidation. Nature. 2015;527:118–22.

    CAS  PubMed  Google Scholar 

  42. 42.

    Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Torano EG, Petrus S, Fernandez AF, Fraga MF. Global DNA hypomethylation in cancer: review of validated methods and clinical significance. Clin Chem Lab Med. 2012;50:1733–42.

    CAS  PubMed  Google Scholar 

  45. 45.

    Dong Y, Zhao H, Li H, Li X, Yang S. DNA methylation as an early diagnostic marker of cancer (review). Biomed Rep. 2014;2:326–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Xu Y, Liu SY, Li J, Zhang L, Chen D, Zhang JP, et al. Real-time sensing of TET2-mediated DNA demethylation in vitro by metal-organic framework-based oxygen sensor for mechanism analysis and stem-cell behavior prediction. Anal Chem. 2018;90:9330–7.

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the Precise Measurement Technology Promotion Foundation.

Author information



Corresponding author

Correspondence to Wataru Yoshida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 286 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taka, N., Yoshida, W. Quantification of global DNA methylation level using 5-methylcytosine dioxygenase. Anal Bioanal Chem 412, 5299–5305 (2020). https://doi.org/10.1007/s00216-020-02745-y

Download citation


  • Global DNA methylation
  • 5-Methylcytosine oxidation
  • Ten-eleven translocation (TET)
  • Succinate