Skip to main content

Advertisement

Log in

Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we developed a triple-parameter strategy for the detection of telomerase activity from cancer cells and urine samples. This strategy was developed based on magnetic bead-enzyme hybrids combined with fluorescence analysis, colorimetric assay, or adenosine triphosphate (ATP) meter as readout. The application of magnetic bead-enzyme hybrids has the advantages of magnetic separation and signal amplification. These detection methods can be used individually or in combination to achieve the optimal sensing performance and make the results more convincing. Among them, the ATP meter with portable size had easy operation and low cost, and this response strategy provided a higher sensitivity at the single-cell level. The designed strategy was suitable as naked-eye sensor and point-of-care testing (POCT) for rapid assaying of telomerase activity.

Magnetic bead-enzyme assemble for triple-parameter telomerase detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J Am Chem Soc. 2003;125(46):13918–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ou X, Hong F, Zhang Z, Cheng Y, Zhao Z, Gao P. A highly sensitive and facile graphene oxide-based nucleic acid probe: label-free detection of telomerase activity in cancer patient’s urine using AIEgens. Biosens Bioelectron. 2017;89(1):417–21.

    Article  CAS  PubMed  Google Scholar 

  3. Lai W, Wei Q, Xu M, Zhuang J, Tang D. Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron. 2017;89(1):645–51.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Xue Q, Liu J, Wang H. Magnetic bead-liposome hybrids enable sensitive and portable detection of DNA methyltransferase activity using personal glucose meter. Biosens Bioelectron. 2017;87:537–44.

    Article  CAS  PubMed  Google Scholar 

  5. Xu X, Wei M, Liu Y, Liu X, Wei W, Zhang Y. A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates. Biosens Bioelectron. 2017;87:600–6.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Qu K, Zhao C, Wu L, Ren J, Wang J, et al. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun. 2012;3:1074.

    Article  PubMed  Google Scholar 

  7. Lin B, Liu D, Yan J, Qiao Z, Zhong Y, Yan J. Enzyme-encapsulated liposome-linked immunosorbent assay enabling sensitive personal glucose meter readout for portable detection of disease biomarkers. ACS Appl Mater Interfaces. 2016;8(11):6890–7.

    Article  CAS  PubMed  Google Scholar 

  8. Shang J, Li Z, Liu L, Xi D, Wang H. Label-free sensing of human 8-oxoguanine DNA glycosylase activity with a nanopore. ACS Sensors. 2018;3(2):512–8.

    Article  CAS  PubMed  Google Scholar 

  9. Duan R, Wang B, Zhang T, Zhang Z, Xu S, Chen Z, et al. Sensitive and bidirectional detection of urine telomerase based on the four detection-color states of difunctional gold nanoparticle probe. Anal Chem. 2014;86(19):9781–5.

    Article  CAS  PubMed  Google Scholar 

  10. Zhuang Y, Shang C, Lou X, Xia F. Construction of AIEgens-based bioprobe with two fluorescent signals for enhanced monitor of extracellular and intracellular telomerase activity. Anal Chem. 2017;89(3):2073–9.

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Chen C, Huang H, Huang D, Luo F, Qiu B. Sensitive detection of telomerase activity in cancer cells using portable pH meter as readout. Biosens Bioelectron. 2018;121:153–8.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu X, Xu H, Lin R, Yang G, Lin Z, Chen G. Sensitive and portable detection of telomerase activity in HeLa cells using the personal glucose meter. Chem Commun. 2014;50(58):7897–9.

    Article  CAS  Google Scholar 

  13. Hong M, Xu L, Xue Q, Li L, Tang B. Fluorescence imaging of intracellular telomerase activity using enzyme-free signal amplification. Anal Chem. 2016;88(24):12177–82.

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Zhang K, Zhang T, Xu J, Chen H. Reliable Forster resonance energy transfer probe based on structure-switching DNA for ratiometric sensing of telomerase in living cells. Anal Chem. 2017;89(7):4216–22.

    Article  CAS  PubMed  Google Scholar 

  15. He C, Liu Z, Wu Q, Zhao J, Liu R, Liu B, et al. Ratiometric fluorescent biosensor for visual discrimination of cancer cells with different telomerase expression levels. ACS Sensors. 2018;3(4):757–62.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Li C, Hu X, Yang Y, Yin Y, Wang Z. A programmed terminal extension strategy to light up multiple beacons for DNA and cellular telomerase detection. Chem Commun. 2017;53(42):5752–5.

    Article  CAS  Google Scholar 

  17. Qian R, Ding L, Ju H. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J Am Chem Soc. 2013;135(36):13282–5.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Han H, Wu Y, Yu C, Ren C, Zhang X. Telomere elongation-based DNA-catalytic amplification strategy for sensitive SERS detection of telomerase activity. Biosens Bioelectron. 2019;142:111543.

    Article  CAS  PubMed  Google Scholar 

  19. Luo S, Zhang Y, Situ B, Zheng L. Fluorescence sensing telomerase activity: from extracellular detection to in situ imaging. Sensors Actuators B Chem. 2018;273:853–61.

    Article  CAS  Google Scholar 

  20. Fan W, Qi Y, Qiu L, He P, Liu C, Li Z. Click chemical ligation-initiated on-bead DNA polymerization for the sensitive flow cytometric detection of 3′-terminal 2′-O-methylated plant microRNA. Anal Chem. 2018;90(8):5390–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kato D, Oishi M. Ultrasensitive detection of DNA and RNA based on enzyme-free click chemical ligation chain reaction on dispersed gold nanoparticles. ACS Nano. 2014;8(10):9988–97.

    Article  CAS  PubMed  Google Scholar 

  22. Zeinhom M, Wang Y, Song Y, Zhu M, Lin Y, Du D. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in yoghurt and egg. Biosens Bioelectron. 2018;99:479–85.

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Fang X, Li H, Cao H, Kong J. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens Bioelectron. 2017;94:169–75.

    Article  CAS  PubMed  Google Scholar 

  24. Guo Y, Yang K, Sun J, Wu J, Ju H. A pH-responsive colorimetric strategy for DNA detection by acetylcholinesterase catalyzed hydrolysis and cascade amplification. Biosens Bioelectron. 2017;94:651–6.

    Article  CAS  PubMed  Google Scholar 

  25. Yang N, Hu M. A fluorimetric method using fluorescein di-beta-D-galactopyranoside for quantifying the senescence-associated beta-galactosidase activity in human foreskin fibroblast Hs68 cells. Anal Biochem. 2004;325(2):337–43.

    Article  CAS  PubMed  Google Scholar 

  26. Leiker. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant. 2008;17:911–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21675119, 21705110, and 81772737), the Natural Science Foundation of Guangdong (2018B030306046), the Project Funded by China Postdoctoral Science Foundation (2019M663154), the Shenzhen Municipal Government of China (JCYJ20170413161749433, JSGG20160301161836370), the Sanming Project of Shenzhen Health and Family Planning Commission (SZSM201412018, SZSM201512037), and the High Level University’s Medical Discipline Construction (2016031638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiren Huang.

Ethics declarations

The work has been approved by the appropriate ethics committee (Medical Ethics Committee of Shenzhen Second People’s Hospital) and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Mao, G., Wu, G. et al. Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level. Anal Bioanal Chem 412, 5283–5289 (2020). https://doi.org/10.1007/s00216-020-02741-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02741-2

Keywords