Automation and low-cost proteomics for characterization of the protein corona: experimental methods for big data


Nanoparticles used in biological settings are exposed to proteins that adsorb on the surface forming a protein corona. These adsorbed proteins dictate the subsequent cellular response. A major challenge has been predicting what proteins will adsorb on a given nanoparticle surface. Instead, each new nanoparticle and nanoparticle modification must be tested experimentally to determine what proteins adsorb on the surface. We propose that any future predictive ability will depend on large datasets of protein-nanoparticle interactions. As a first step towards this goal, we have developed an automated workflow using a liquid handling robot to form and isolate protein coronas. As this workflow depends on magnetic separation steps, we test the ability to embed magnetic nanoparticles within a protein nanoparticle. These experiments demonstrate that magnetic separation could be used for any type of nanoparticle in which a magnetic core can be embedded. Higher-throughput corona characterization will also require lower-cost approaches to proteomics. We report a comparison of fast, low-cost, and standard, slower, higher-cost liquid chromatography coupled with mass spectrometry to identify the protein corona. These methods will provide a step forward in the acquisition of the large datasets necessary to predict nanoparticle-protein interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci. 2007;134-135:167–74.

    CAS  PubMed  Google Scholar 

  2. 2.

    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132:5761–8.

    CAS  PubMed  Google Scholar 

  3. 3.

    Park S, Hamad-Schifferli K. Nanoscale interfaces to biology. Curr Opin Chem Biol. 2010;14:616–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41:2780–99.

    CAS  PubMed  Google Scholar 

  5. 5.

    Del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles - from the past to the future. Mater Horiz. 2014;1:301–13.

    Google Scholar 

  6. 6.

    Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47:2651–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–6.

    CAS  PubMed  Google Scholar 

  8. 8.

    Mahmoudi M, Bertrand N, Zope H, Farokhzad OC. Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today. 2016;11:817–32.

    CAS  Google Scholar 

  9. 9.

    Yang ST, Liu Y, Wang YW, Cao AN. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small. 2013;9:1635–53.

    CAS  PubMed  Google Scholar 

  10. 10.

    Payne CK. A protein corona primer for physical chemists. J Chem Phys. 2019;151:130901.

    PubMed  Google Scholar 

  11. 11.

    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307:93–102.

    CAS  PubMed  Google Scholar 

  13. 13.

    Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71.

    CAS  PubMed  Google Scholar 

  14. 14.

    Duan XP, Li YP. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9:1521–32.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chinen AB, Guan CM, Ko CH, Mirkin CA. The impact of protein corona formation on the macrophage cellular uptake and biodistribution of spherical nucleic acids. Small. 2017;13:#1603847.

    Google Scholar 

  16. 16.

    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

    CAS  Google Scholar 

  17. 17.

    Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, et al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 2009;276:3372–81.

    CAS  PubMed  Google Scholar 

  18. 18.

    Olenick LL, Troiano JM, Vartanian A, Melby ES, Mensch AC, Zhang L, et al. Lipid corona formation from nanoparticle interactions with bilayers. Chem. 2018;4:2709–23.

    CAS  Google Scholar 

  19. 19.

    Pink M, Verma N, Kersch C, Schmitz-Spanke S. Identification and characterization of small organic compounds within the corona formed around engineered nanoparticles. Environ Sci Nano. 2018;5:1420–7.

    CAS  Google Scholar 

  20. 20.

    Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 2012;35:64–70.

    CAS  Google Scholar 

  21. 21.

    Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int. 2014;63:224–35.

    CAS  PubMed  Google Scholar 

  23. 23.

    Giraldo JP, Wu HH, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol. 2019;14:541–53.

    CAS  PubMed  Google Scholar 

  24. 24.

    Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science. 2019;363:eaau8299.

    PubMed  Google Scholar 

  25. 25.

    Mauter MS, Zucker I, Perreault F, Werber JR, Kim JH, Elimelech M. The role of nanotechnology in tackling global water challenges. Nat Sustain. 2018;1:166–75.

    Google Scholar 

  26. 26.

    Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Siegrist H, Burkhardt M. Transformation of AgCl nanoparticles in a sewer system — a field study. Sci Total Environ. 2015;535:20–7.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lopez H, Lobaskin V. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J Chem Phys. 2015;143:#243138.

    Google Scholar 

  28. 28.

    Voicescu M, Ionescu S, Angelescu DG. Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res. 2012;14:1174.

    Google Scholar 

  29. 29.

    Ding F, Radic S, Chen R, Chen P, Geitner NK, Brown JM, et al. Direct observation of a single nanoparticle–ubiquitin corona formation. Nanoscale. 2013;5:9162–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wei S, Ahlstrom LS, Brooks CL. Exploring protein–nanoparticle interactions with coarse-grained protein folding models. Small. 2017;13:#1603748.

    Google Scholar 

  31. 31.

    H-m D, Ma Y-q. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials. 2014;35:8703–10.

    Google Scholar 

  32. 32.

    Li R, Chen R, Chen P, Wen Y, Ke PC, Cho SS. Computational and experimental characterizations of silver nanoparticle–apolipoprotein biocorona. J Phys Chem B. 2013;117:13451–6.

    CAS  PubMed  Google Scholar 

  33. 33.

    Li R, Stevens CA, Cho SS. Molecular dynamics simulations of biocorona formation. In: Suzuki J, Nakano T, Moore MJ, editors. Modeling, methodologies and tools for molecular and nano-scale communications: modeling, methodologies and tools: Springer International; 2017. p. 241–56.

  34. 34.

    Manning MD, Kwansa AL, Oweida T, Peerless JS, Singh A, Yingling YG. Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces. Biointerphases. 2018;13:06D502.

    CAS  PubMed  Google Scholar 

  35. 35.

    Deyev S, Proshkina G, Ryabova A, Tavanti F, Menziani MC, Eidelshtein G, et al. Synthesis, characterization, and selective delivery of DARPin–gold nanoparticle conjugates to cancer cells. Bioconjug Chem. 2017;28:2569–74.

    CAS  PubMed  Google Scholar 

  36. 36.

    Tavanti F, Pedone A, Menziani MC. Competitive binding of proteins to gold nanoparticles disclosed by molecular dynamics simulations. J Phys Chem C. 2015;119:22172–80.

    CAS  Google Scholar 

  37. 37.

    Cui Q, Hernandez R, Mason SE, Frauenheim T, Pedersen JA, Geiger F. Sustainable nanotechnology: opportunities and challenges for theoretical/computational studies. J Phys Chem B. 2016;120:7297–306.

    CAS  PubMed  Google Scholar 

  38. 38.

    Liang D, Hong J, Fang D, Bennett JW, Mason SE, Hamers RJ, et al. Analysis of the conformational properties of amine ligands at the gold/water interface with QM, MM and QM/MM simulations. Phys Chem Chem Phys. 2018;20:3349–62.

    CAS  PubMed  Google Scholar 

  39. 39.

    Van Lehn RC, Alexander-Katz A. Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations. J Phys Chem C. 2013;117:20104–15.

    Google Scholar 

  40. 40.

    Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F, Bellotti V, et al. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. Nanoscale. 2018;10:4793–806.

    CAS  PubMed  Google Scholar 

  41. 41.

    Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B. 2012;116:8901–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Fleischer CC, Kumar U, Payne CK. Cellular binding of anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition. Biomater Sci. 2013;1:975–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Fleischer CC, Payne CK. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B. 2014;118:14017–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hill A, Payne CK. Impact of serum proteins on MRI contrast agents: cellular binding and T2 relaxation. RSC Adv. 2014;4:31735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8:2439–55.

    CAS  PubMed  Google Scholar 

  46. 46.

    Findlay MR, Freitas DN, Mobed-Miremadi M, Wheeler KE. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environ Sci Nano. 2018;5:64–71.

    CAS  PubMed  Google Scholar 

  47. 47.

    Lazarovits J, Sindhwani S, Tavares AJ, Zhang Y, Song F, Audet J, et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano. 2019;13:8023–34.

    CAS  PubMed  Google Scholar 

  48. 48.

    Chan EM, Xu C, Mao AW, Han G, Owen JS, Cohen BE, et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 2010;10:1874–85.

    CAS  PubMed  Google Scholar 

  49. 49.

    Pendleton IM, Cattabriga G, Li Z, Najeeb MA, Friedler SA, Norquist AJ, et al. Experiment specification, capture and laboratory automation technology (ESCALATE): a software pipeline for automated chemical experimentation and data management. MRS Communications. 2019;9:846–59.

    CAS  Google Scholar 

  50. 50.

    Runa S, Khanal D, Kemp ML, Payne CK. TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes. J Phys Chem C. 2016;120:20736–42.

    CAS  Google Scholar 

  51. 51.

    Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale. 2017;9:7595–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Jayaram DT, Pustulka SM, Mannino RG, Lam WA. Protein corona in response to flow: effect on protein concentration and structure. Biophys J. 2018;115:209–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jayaram DT, Kumar A, Kippner LE, Ho P-Y, Kemp ML, Fan Y, et al. TiO2 nanoparticles generate superoxide and alter gene expression in human lung cells. RSC Adv. 2019;9:25039–47.

    CAS  Google Scholar 

  54. 54.

    Etorki AM, Gao M, Sadeghi R, Maldonado-mejia LF, Kokini JL. Effects of desolvating agent types, ratios, and temperature on size and nanostructure of nanoparticles from α-lactalbumin and ovalbumin. J Food Sci. 2016;81:E2511–20.

    CAS  PubMed  Google Scholar 

  55. 55.

    Chang TZ, Stadmiller SS, Staskevicius E, Champion JA. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomat Sci. 2017;5:223–33.

    CAS  Google Scholar 

  56. 56.

    Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rimkus G, Bremer-Streck S, Grüttner C, Kaiser WA, Hilger I. Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes? Contrast Media Mol Imaging. 2011;6:119–25.

    CAS  PubMed  Google Scholar 

  58. 58.

    Gruttner C, Muller K, Teller J. A rapid assay to measure the shielding of iron oxide cores by the particle shell. IEEE Trans Magn. 2012;49:177–81.

    Google Scholar 

  59. 59.

    Muller J, Bauer KN, Prozeller D, Simon J, Mailander V, Wurm FM, et al. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials. 2017;115:1–8.

    CAS  PubMed  Google Scholar 

  60. 60.

    Chang TZ, Diambou I, Rok J, Baozhong K, Champion JA. Host- and pathogen-derived adjuvant coatings on protein nanoparticle vaccines. Bioeng Transl Med. 2017;2:120–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Deng L, Mohan T, Chang TZ, Gonzalez GX, Wang Y, Kwon Y, et al. Double-layerd protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun. 2018;9:1–12.

    Google Scholar 

  62. 62.

    Sakulkhu U, Maurizi L, Mahmoudi M, Motazacker M, Vries M, Gramoun A, et al. Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale. 2014;6:11439–50.

    CAS  PubMed  Google Scholar 

  63. 63.

    Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol. 2017;12:387.

    CAS  PubMed  Google Scholar 

  64. 64.

    Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32:223–6.

    PubMed  PubMed Central  Google Scholar 

Download references


The authors thank Dhanya T. Jayaram and Gustavo Sosa Macias for their assistance with the experiments. The protein NP TEM work was performed at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (ECCS-1542174). We thank the Duke University School of Medicine for the use of the Proteomics and Metabolomics Shared Resource, which provided proteomics service, with special thanks to Erik Soderblom for the discussion and technical advice. Thomas Pho was supported by a fellowship from the American Chemical Society Bridge Program.


This study received funding from the NSF (CBET-1901579) and NIH (NIAID 2R01AI101047-06A1).

Author information



Corresponding authors

Correspondence to Julie A. Champion or Christine K. Payne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Electronic supplementary material


(PDF 406 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poulsen, K.M., Pho, T., Champion, J.A. et al. Automation and low-cost proteomics for characterization of the protein corona: experimental methods for big data. Anal Bioanal Chem 412, 6543–6551 (2020).

Download citation


  • Biomaterials
  • Nanoparticles/nanotechnology
  • Spectroscopy/instrumentation