Skip to main content

Advertisement

Log in

Myoglobin-silver reduced graphene oxide nanocomposite stochastic biosensor for the determination of luteinizing hormone and follicle-stimulating hormone from saliva samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A silver reduced graphene oxide (Ag-rGO) nanocomposite paste was prepared for the assay of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in children’s saliva. The paste was modified with a solution of myoglobin (Myb) to form the stochastic biosensor, to improve the sensitivity of the method. The Ag-rGO powder and Myb-Ag-rGO paste were morphologically and structurally characterized by SEM, TEM and XRD measurements. For the molecular recognition of the hormones, the biosensor based on Myb-Ag-rGO reached determination limits of 8.5 × 10−3 UI L−1 (2.0 × 10−12 g/mL) for luteinizing hormone and 1.4 × 10−2 UI L−1 (1.0 × 10−12 g/mL) for follicle-stimulating hormone. The determination of both hormones in saliva samples collected from children was done with high reliability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kakarla N, Bradshaw K. Disorders of pubertal development precocious puberty. Semin Reprod Med. 2003;21:339–51.

    Article  CAS  Google Scholar 

  2. Kaplowitz P. Diagnosing children with signs of early puberty: knowing when to test and when to just monitor. Expert Rev Endocrinol Metab. 2016;11:297–9.

    CAS  PubMed  Google Scholar 

  3. Dunkel L, Alfthan H, Stenman UH, Selstam G, Rosberg S, Albertsson-Wikland K. Development changes in 24-hour profiles of luteinizing hormone and follicle-stimulating hormone from prepuberty to midstages of puberty in boys. J Clin Endocrinol Metab. 1992;74:890–7.

    Article  CAS  Google Scholar 

  4. Yan F, Zhang M, Li J. Solution-gated graphene transistors for chemical and biological sensors. Adv Healthc Mater. 2014;3:313–31.

    Article  CAS  Google Scholar 

  5. Wu JF, Xu MQ, Zhao GC. Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun. 2010;12:175–7.

    Article  CAS  Google Scholar 

  6. Tashkhourian J, Nezhad MRH, Khodavesi J, Javadi S. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J Electroanal Chem. 2009;633:85–91.

    Article  CAS  Google Scholar 

  7. Ojani R, Safshekan S, Raoof JB. Silver nanoparticle decorated poly(2-aminodiphenylamine) modified carbon paste electrode as a simple and efficient Electrocatalyst for oxidation of formaldehyde. Chin J Catal. 2014;35:1565–70.

    Article  CAS  Google Scholar 

  8. de la Escosura-Muniz A, Mercoki A. A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small. 2011;7:675–82.

    Article  Google Scholar 

  9. Seidlitz HK, Schneckenburger H, Stettmeier K. Time-resolved polarization measurements of porphyrin fluorescence in solution and in single cells. J Photochem Photobiol B. 1990;5:391–400.

    Article  CAS  Google Scholar 

  10. Hladky SB, Haydon DA. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature. 1970;225:451–3.

    Article  CAS  Google Scholar 

  11. Miles BN, Ivanov AP, Wilson KA, Dogan F, Japrung D, Edel JB. Single molecule sensing with solid-state nanopores. Chem Soc Rev. 2013;42:15–28.

    Article  CAS  Google Scholar 

  12. Bayley H, Cremer PS. Stochastic sensors inspired by biology. Nature. 2001;413:226–30.

    Article  CAS  Google Scholar 

  13. Stefan-van Staden RI, van Staden JF, Balasoiu SC. Disposable stochastic dot sensors for the assay of ascorbic acid in pharmaceutical samples, beverages, and biological fluids. Anal Lett. 2011;44:2280–6.

    Article  CAS  Google Scholar 

  14. Stefan-van Staden RI, Gugoasa LA, Biris AR. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials. Nanoscale. 2015;7:14848–53.

    Article  CAS  Google Scholar 

  15. Gugoasa LA, Stefan-van Staden RI, Dima A, Visan CA, Streinu-Cercel A, Biris A, et al. Fast screening of biological fluids for cytokines and adipokines using stochastic sensing. Microelectron Eng. 2015;148:64–9.

    Article  CAS  Google Scholar 

  16. Stefan-van Staden RI, Gugoasa LA, Socaci C, Biris AR. New nanocomposites-graphene pastes based stochastic microsensors. RSC Adv. 2015;5:66185–91.

    Article  CAS  Google Scholar 

  17. Gugoasa LA, Muklive Al’Ogaidi AJ, Stefan-van Staden RI, El-Khatib A, Rosu MC, Pruneanu S. Multimode microsensors based on Ag–TiO2–graphene materials used for the molecular recognition of carcinoembryonic antigen in whole blood samples. RSC Adv. 2017;7:28419–26.

    Article  CAS  Google Scholar 

  18. Gugoasa LA, Muklive Al’Ogaidi AJ, Stefan-van Staden RI, Stanciu-Gavan C, van Staden JF, Rosu MC, et al. Molecular recognition of colon cancer biomarkers: P53, KRAS and CEA in whole blood samples. J Electrochem Soc. 2017;164:B443–7.

    Article  CAS  Google Scholar 

  19. Stefan-van Staden RI, Balahura LR, Gugoasa LA, Aboul-Enein H, van Staden JF, Rosu MC, et al. Pattern recognition of 8-hydroxy-2′-deoxyguanosine in biological fluids. Anal Bioanal Chem. 2018;410:115–21.

    Article  CAS  Google Scholar 

  20. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, et al. DNA translocation through graphene nanopores. Nano Lett. 2010;10:2915–21.

    Article  CAS  Google Scholar 

  21. Siwy ZS, Davenport M. Nanopores: graphene opens up to DNA. Nat Nanotechnol. 2010;5:697–8.

    Article  CAS  Google Scholar 

  22. Stargardt JF, Hawkridge FM, Landrum HL. Reversible heterogeneous reduction and oxidation of sperm whale myoglobin at a surface modified gold minigrid electrode. Anal Chem. 1978;50:930–2.

    Article  CAS  Google Scholar 

  23. Pogacean F, Coros M, Magerusan L, Mirel V, Turza A, Katona G, et al. Exfoliation of graphite rods via pulses of current for graphene synthesis: sensitive detection of 8-hydroxy-2′-deoxyguanosine. Talanta. 2019;196:182–90.

    Article  CAS  Google Scholar 

  24. Udayabhaskar R, Mangalaraja RV, Pandiyarajan T, Karthikeyan B, Mansilla HD, Contreras D. Spectroscopic investigation on graphene-copper nanocomposites with strong UV emission and high catalytic activity. Carbon. 2017;124:256–62.

    Article  CAS  Google Scholar 

  25. Garaj S, Liu S, Golovchenko JA, Branton D. Molecule-hugging graphene nanopores. Proc Natl Acad Sci U S A. 2013;110:12192–6.

    Article  CAS  Google Scholar 

  26. Hoogerheide DP, Gurnev PA, Rostovtseva TK, Bezrukov SM. Real-time nanopore-based recognition of protein translocation success. Biophys J. 2018;114:772–6.

    Article  CAS  Google Scholar 

  27. Alotaibi MF. Physiology of puberty in boys and girls and pathological disorders affecting its onset. J Adolesc. 2019;71:63–71.

    Article  Google Scholar 

  28. Loomba-Albrecht LA, Styne DM. The physiology of puberty and its disorders. Pediatr Ann. 2012;41:e1–9.

    Article  Google Scholar 

  29. Qu Y, Berghman LR, Vandesande F. An electrochemical enzyme immunoassay for chicken luteinizing hormone: extension of the detection limit by adequate control of the nonspecific adsorption. Anal Biochem. 1998;259:167–75.

    Article  CAS  Google Scholar 

  30. Pritchard DJ, Morgan H, Cooper JM. Simultaneous determination of follicle stimulating hormone and luteinising hormone using a multianalyte immunosensor. Anal Chim Acta. 1995;310:251–6.

    Article  CAS  Google Scholar 

  31. Trevino J, Calle A, Rodriguez-Frade JM, Mellado M, Lechuga LM. Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples. Clin Chim Acta. 2009;403:56–62.

    Article  CAS  Google Scholar 

  32. Brindle E, Miller RC, Shofer JB, Klein NA, Soules MR, O’Connor KA. Urinary beta-luteinizing hormone and beta-follicle stimulating hormone immunoenzymometric assays for population research. Clin Biochem. 2006;39:1071–9.

    Article  CAS  Google Scholar 

  33. Aizen J, Kasuto H, Levavi-Sivan B. Development of specific enzyme-linked immunosorbent assay for determining LH and FSH levels in tilapia, using recombinant gonadotropins. Gen Comp Endocrinol. 2007;153:323–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Lucian-Barbu Tudoran for performing TEM/SEM measurements and to PhD student Alexandru Turza for recording the XRD measurements.

Funding

This work was financially supported by a grant of the Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-PD-2016-0190, within PNCDI III. TEM/SEM measurements were partially supported through the infrastructure obtained in the Project: Research Center and Advanced Technologies for Alternative Energies - CETATEA - 623/11.03.2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Alexandra Dinu Gugoasa.

Ethics declarations

Informed consent was obtained from all parents or legal tutors of the patients.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Euroanalysis XX with guest editor Sibel A. Ozkan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gugoasa, L.A.D., Stefan-van Staden, RI., van Staden, J.F. et al. Myoglobin-silver reduced graphene oxide nanocomposite stochastic biosensor for the determination of luteinizing hormone and follicle-stimulating hormone from saliva samples. Anal Bioanal Chem 412, 5191–5202 (2020). https://doi.org/10.1007/s00216-020-02663-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02663-z

Keywords

Profiles

  1. Raluca-Ioana Stefan-van Staden