Electrochemiluminescence reaction pathways in nanofluidic devices


Nanofluidic electrochemical devices confine the volume of chemical reactions to femtoliters. When employed for light generation by electrochemiluminescence (ECL), nanofluidic confinement yields enhanced intensity and robust luminescence. Here, we investigate different ECL pathways, namely coreactant and annihilation ECL in a single nanochannel and compare light emission profiles. By high-resolution imaging of electrode areas, we show that different reaction schemes produce very different emission profiles in the unique confined geometry of a nanochannel. The confrontation of experimental results with finite element simulation gives further insight into the exact reaction ECL pathways. We find that emission strongly depends on depletion, geometric exclusion, and recycling of reactants in the nanofluidic device.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Bard AJ. Electrogenerated chemiluminescence. New-York: M. Dekker; 2004.

    Book  Google Scholar 

  2. 2.

    Sojic N, editor. Analytical electrogenerated chemiluminescence: from fundamentals to bioassays. Detection Science: Royal Society of Chemistry (RSC) Publishing; 2020.

    Google Scholar 

  3. 3.

    Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annual Rev Anal Chem. 2009;2(1):359–85. https://doi.org/10.1146/annurev-anchem-060908-155305.

    CAS  Article  Google Scholar 

  4. 4.

    Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42. https://doi.org/10.1039/c5cs00086f.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003–36. https://doi.org/10.1021/cr020373d.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108(7):2506–53. https://doi.org/10.1021/cr068083a.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Sojic N, Arbault S, Bouffier L, Kuhn A. Applications of electrogenerated chemiluminescence in analytical chemistry. In: Miomandre F, Audebert P, editors. Luminescence in electrochemistry: applications in analytical chemistry. Cham: Physics and Biology. Springer International Publishing; 2017. p. 257–91. https://doi.org/10.1007/978-3-319-49137-0_8.

    Google Scholar 

  8. 8.

    Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, et al. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord Chem Rev. 2018;367:65–81. https://doi.org/10.1016/j.ccr.2018.04.011.

    CAS  Article  Google Scholar 

  9. 9.

    Zhai Y, Zhu Z, Zhou S, Zhu C, Dong S. Recent advances in spectroelectrochemistry. Nanoscale. 2018;10(7):3089–111. https://doi.org/10.1039/c7nr07803j.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Garoz-Ruiz J, Perales-Rondon JV, Heras A, Colina A. Spectroelectrochemical sensing: current trends and challenges. Electroanalysis. 2019;31(7):1254–78. https://doi.org/10.1002/elan.201900075.

    CAS  Article  Google Scholar 

  11. 11.

    Lozeman JJA, Führer P, Olthuis W, Odijk M. Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. Analyst. 2020. https://doi.org/10.1039/c9an02105a.

  12. 12.

    Kapturkiewicz A. Electrochemical generation of excited intramolecular charge-transfer states. ChemElectroChem. 2017;4(7):1604–38. https://doi.org/10.1002/celc.201600865.

    CAS  Article  Google Scholar 

  13. 13.

    Amatore C, Pebay C, Servant L, Sojic N, Szunerits S, Thouin L. Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. ChemPhysChem. 2006;7:1322–7.

    CAS  Article  Google Scholar 

  14. 14.

    Doeven EH, Zammit EM, Barbante GJ, Hogan CF, Barnett NW, Francis PS. Selective excitation of concomitant electrochemiluminophores: tuning emission color by electrode potential. Angew Chem Int Ed. 2012;51(18):4354–7. https://doi.org/10.1002/anie.201200814.

    CAS  Article  Google Scholar 

  15. 15.

    Liu X, Shi L, Niu W, Li H, Xu G. Environmentally friendly and highly sensitive ruthenium(II) Tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. Angew Chem Int Ed. 2007;46(3):421–4. https://doi.org/10.1002/anie.200603491.

    CAS  Article  Google Scholar 

  16. 16.

    Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69: the Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) system eevisited a new route involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124(48):14478–85. https://doi.org/10.1021/ja027532v.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci. 2014;5(6):2568–72. https://doi.org/10.1039/c4sc00312h.

    CAS  Article  Google Scholar 

  18. 18.

    Rinklin P, Mayer D, Wolfrum B. Electrochemical nanocavity devices. In: Schöning MJ, Poghossian A, editors. Label-free biosensing: advanced materials. Cham: Devices and Applications. Springer International Publishing; 2018. p. 199–214. https://doi.org/10.1007/5346_2017_8.

    Google Scholar 

  19. 19.

    White HS, McKelvey K. Redox cycling in nanogap electrochemical cells. Curr Op Electrochem. 2018;7:48–53. https://doi.org/10.1016/j.coelec.2017.10.021.

    CAS  Article  Google Scholar 

  20. 20.

    Al-Kutubi H, Voci S, Rassaei L, Sojic N, Mathwig K. Enhanced annihilation electrochemiluminescence by nanofluidic confinement. Chem Sci. 2018;9(48):8946–50. https://doi.org/10.1039/c8sc03209b.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cui J, Mathwig K, Mampallil D, Lemay SG. Potential-controlled adsorption, separation, and detection of redox species in nanofluidic devices. Anal Chem. 2018;90(12):7127–30. https://doi.org/10.1021/acs.analchem.8b01719.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kang S, Nieuwenhuis AF, Mathwig K, Mampallil D, Kostiuchenko ZA, Lemay SG. Single-molecule electrochemistry in nanochannels: probing the time of first passage. Farad Discuss. 2016;193(0):41–50. https://doi.org/10.1039/c6fd00075d.

    CAS  Article  Google Scholar 

  23. 23.

    Krause KJ, Mathwig K, Wolfrum B, Lemay SG. Brownian motion in electrochemical nanodevices. Eur Phys J SpecTop. 2014;223(14):3165–78. https://doi.org/10.1140/epjst/e2014-02325-5.

    Article  Google Scholar 

  24. 24.

    Mathwig K, Lemay SG. Pushing the limits of electrical detection of ultralow flows in nanofluidic channels. Micromachines. 2013;4(2):138–48.

    Article  Google Scholar 

  25. 25.

    Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem. 2016;3(12):1990–7. https://doi.org/10.1002/celc.201600602.

    CAS  Article  Google Scholar 

  26. 26.

    Mathwig K, Sojic N. Towards determining kinetics of annihilation electrogenerated chemiluminescence by concentration-dependent luminescent intensity. J Anal Test. 2019;3(2):160–5. https://doi.org/10.1007/s41664-019-00094-z.

    Article  Google Scholar 

  27. 27.

    Qiu R, Zhang X, Luo H, Shao Y. Mass spectrometric snapshots for electrochemical reactions. Chem Sci. 2016;7(11):6684–8. https://doi.org/10.1039/c6sc01978a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Qin X, Gu C, Wang M, Dong Y, Nie X, Li M, et al. Triethanolamine-modified gold nanoparticles synthesized by a one-pot method and their application in electrochemiluminescent immunoassy. Anal Chem. 2018;90(4):2826–32. https://doi.org/10.1021/acs.analchem.7b04952.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Theakstone AG, Doeven EH, Conlan XA, Dennany L, Francis PS. ‘Cathodic’ electrochemiluminescence of [Ru(bpy)3]2+ and tri-n-propylamine confirmed as emission at the counter electrode. Chem Commun. 2019;55(49):7081–4. https://doi.org/10.1039/c9cc03201k.

    CAS  Article  Google Scholar 

  30. 30.

    Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, et al. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis. J Am Chem Soc. 2017;139(46):16830–7. https://doi.org/10.1021/jacs.7b09260.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Klaus Mathwig or Neso Sojic.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by any of the contributing authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1385 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voci, S., Al-Kutubi, H., Rassaei, L. et al. Electrochemiluminescence reaction pathways in nanofluidic devices. Anal Bioanal Chem 412, 4067–4075 (2020). https://doi.org/10.1007/s00216-020-02630-8

Download citation


  • Electrochemiluminescence
  • Electroanalytical methods
  • Nanofluidic device
  • Fluorescence/luminescence