Skip to main content

Advertisement

Log in

Creation of an electrokinetic characterization library for the detection and identification of biological cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The rising concern over drug-resistant microorganisms has increased the need for rapid and portable detection systems. However, the traditional methods for the analysis of microorganisms can be both resource and time intensive. This contribution presents an alternative approach for the characterization of microorganisms using a microscale electrokinetic technique. The present study aims to develop and validate a library with a novel parameter referred to as the electrokinetic equilibrium condition for each strain, which will allow for fast identification of the studied bacterial and yeast cells in electrokinetic (EK) microfluidic devices. To create the library, experiments with six organisms of interest were conducted using insulator-based EK devices with circle-shaped posts. The organisms included one yeast strain, Saccharomyces cerevisiae; one salmonella strain, Salmonella enterica; two species from the same genus, Bacillus cereus and Bacillus subtilis; and two Escherichia coli strains. The results from these experiments were then analyzed with a mathematical model in COMSOL Multiphysics®, which yielded the electrokinetic equilibrium condition for each distinct strain. Lastly, to validate the applicability EK library, the COMSOL model was used to estimate the trapping conditions needed in a device with oval-shaped posts for each organism, and these values were then compared with experimentally obtained values. The results suggest the library can be used to estimate trapping voltages with a maximum relative error of 12%. While the proposed electrokinetic technique is still a novel approach and the analysis of additional microorganisms would be needed to expand the library, this contribution further supports the potential of microscale electrokinetics as a technique for the rapid and robust characterization of microbes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Schloss PD, Handelsman J. Status of the microbial census. Microbiol Mol Biol Rev. 2004;68(4):686–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dykhuizen D. Species numbers in bacteria. Proc Calif Acad Sci. 2005;56(6 Suppl 1):62–71.

    PubMed  PubMed Central  Google Scholar 

  3. Rampelotto PH. Extremophiles and extreme environments. Life. 2013;3(3):482–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev. 2017;46(16):4818–32.

    Article  PubMed  Google Scholar 

  5. Land GA, Vinton EC, Adcock GB, Hopkins JM. Improved auxanographic method for yeast assimilations: a comparison with other approaches. J Clin Microbiol. 1975;2(3):206–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73.

    Article  PubMed  CAS  Google Scholar 

  7. Lapizco-Encinas BH. Chapter 7 Applications of dielectrophoresis in microfluidics. Microfluidics in detection science: lab-on-a-chip technologies. Cambridge: The Royal Society of Chemistry; 2015. p. 192–223.

  8. Kirby BJ. Micro- and nanoscale fluid mechanics. Transport in microfluidic devices. New York: Cambridge University Press; 2010.

  9. Sonnenberg A, Marciniak JY, McCanna J, Krishnan R, Rassenti L, Kipps TJ, et al. Dielectrophoretic isolation and detection of cfc-DNA nanoparticulate biomarkers and virus from blood. Electrophoresis. 2013;34(7):1076–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Abd Rahman N, Ibrahim F, Yafouz B. Dielectrophoresis for biomedical sciences applications: a review. Sensors. 2017;17(3):449.

    Article  CAS  Google Scholar 

  11. Douglas TA, Cemazar J, Balani N, Sweeney DC, Schmelz EM, Davalos RV. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Electrophoresis. 2017;38(11):1507–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nakano A, Camacho-Alanis F, Ros A. Insulator-based dielectrophoresis with [small beta]-galactosidase in nanostructured devices. Analyst. 2015;140(3):860–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ai Y, Zeng Z, Qian S. Direct numerical simulation of AC dielectrophoretic particle–particle interactive motions. J Colloid Interface Sci. 2014;417:72–9.

    Article  PubMed  CAS  Google Scholar 

  14. LaLonde A, Romero-Creel MF, Lapizco-Encinas BH. Assessment of cell viability after manipulation with insulator-based dielectrophoresis. Electrophoresis. 2015;36(13):1479–84.

    Article  PubMed  CAS  Google Scholar 

  15. Coll De Peña A, Mohd Redzuan NH, Abajorga M, Thomas JA, Lapizco-Encinas BH. On the potential analysis of bacteriophage viruses with insulator-based dielectrophoresis. Micromachines. 2019;10(7):450.

    Article  PubMed Central  Google Scholar 

  16. Adekanmbi EO, Srivastava SK. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. Lab Chip. 2016;16(12):2148–67.

    Article  PubMed  CAS  Google Scholar 

  17. Jones PV, Salmon GL, Ros A. Continuous separation of DNA molecules by size using insulator-based dielectrophoresis. Anal Chem. 2017;89(3):1531–9.

    Article  PubMed  CAS  Google Scholar 

  18. Szumski M, Klodzinska E, Buszewski B. Separation of microorganisms using electromigration techniques. J Chromatogr A. 2005;1084(1–2):186–93.

    Article  PubMed  CAS  Google Scholar 

  19. Pethig R. Review—where is dielectrophoresis (DEP) going? J Electrochem Soc. 2017;164(5):B3049–B55.

    Article  CAS  Google Scholar 

  20. Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: a review. Electrophoresis. 2019;40(3):358–75.

    Article  PubMed  CAS  Google Scholar 

  21. Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis. 2019;40(18–19):2484–513.

    PubMed  CAS  Google Scholar 

  22. Romero-Creel M, Goodrich E, Polniak D, Lapizco-Encinas B. Assessment of sub-micron particles by exploiting charge differences with dielectrophoresis. Micromachines. 2017;8(8):239–53.

    Article  PubMed Central  Google Scholar 

  23. Dukhin SS. Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interf Sci. 1991;35:173–96.

    Article  CAS  Google Scholar 

  24. Schnitzer O, Zeyde R, Yavneh I, Yariv E. Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys Fluids. 2013;25(5):052004.

    Article  CAS  Google Scholar 

  25. Figliuzzi B, Chan WHR, Moran JL, Buie CR. Nonlinear electrophoresis of ideally polarizable particles. Phys Fluids. 2014;26(10):102002.

    Article  CAS  Google Scholar 

  26. Schnitzer O, Yariv E. Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Phys Fluids. 2014;26(12):122002.

    Article  CAS  Google Scholar 

  27. Khair AS. Strong deformation of the thick electric double layer around a charged particle during sedimentation or electrophoresis. Langmuir. 2018;34(3):876–85.

    Article  PubMed  CAS  Google Scholar 

  28. Elitas M, Dhar N, Schneider K, Valero A, Braschler T, McKinney JD, et al. Dielectrophoresis as a single cell characterization method for bacteria. Biomed Phys Eng Express. 2017;3(1):015005.

    Article  Google Scholar 

  29. Hilton SH, Hayes MA. A mathematical model of dielectrophoretic data to connect measurements with cell properties. Anal Bioanal Chem. 2019;411:2223–2237. https://doi.org/10.1007/s00216-019-01757-7.

  30. Syed LU, Liu J, Price AK, Li Y-f, Culbertson CT, Li J. Dielectrophoretic capture of E. coli cells at micropatterned nanoelectrode arrays. Electrophoresis. 2011;32(17):2358–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Seyedi SS, Matyushov DV. Protein dielectrophoresis in solution. J Phys Chem B. 2018;122(39):9119–27.

    Article  PubMed  CAS  Google Scholar 

  32. Mohammadi M, Zare MJ, Madadi H, Sellarès J, Casals-Terré J. A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping. Anal Bioanal Chem. 2016;408(19):5285–94.

    Article  PubMed  CAS  Google Scholar 

  33. Crowther CV, Hayes MA. Refinement of insulator-based dielectrophoresis. Analyst. 2017;142(9):1608–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang Q, Jones AAD 3rd, Gralnick JA, Lin L, Buie CR. Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci Adv. 2019;5(1):eaat5664–eaat.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Betts WB. The potential of dielectrophoresis for the real-time detection of microorganisms in foods. Trends Food Sci Technol. 1995;6(2):51–8.

    Article  CAS  Google Scholar 

  36. Markx GH, Dyda PA, Pethig R. Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol. 1996;51(2):175–80.

    Article  PubMed  CAS  Google Scholar 

  37. Suehiro J, Noutomi D, Shutou M, Hara M. Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen-antibody reaction. J Electrost. 2003;58(3/4):229–46.

    Article  Google Scholar 

  38. Bennett D, Khusid B, James C, Galambos P, Okandan M, Jacqmin D, et al. Combined field-induced dielectrophoresis and phase separation for manipulating particles in microfluidics. Appl Phys Lett. 2003;83(23):4866–8.

    Article  CAS  Google Scholar 

  39. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem. 2004;76(6):1571–9.

    Article  PubMed  CAS  Google Scholar 

  40. Lapizco-Encinas BH, Davalos R, Simmons BA, Cummings EB, Fintschenko Y. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Methods. 2005;62:317–26.

    Article  PubMed  CAS  Google Scholar 

  41. Probstein RF. Physicochemical hydrodynamics: an introduction. Wiley; 2005.

  42. Shilov V, Barany S, Grosse C, Shramko O. Field-induced disturbance of the double layer electro-neutrality and non-linear electrophoresis. Adv Colloid Interf Sci. 2003;104(1):159–73.

    Article  CAS  Google Scholar 

  43. Saucedo-Espinosa MA, LaLonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis. 2016;37(2):282–90.

    Article  PubMed  CAS  Google Scholar 

  44. Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chávez-Santoscoy AV, Martínez Chapa SO. Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip. 2009;9(20):2896–901.

    Article  PubMed  CAS  Google Scholar 

  45. Cardenas-Benitez B, Lapizco-Encinas BH, Jind B, Gallo-Villanueva RC, Martinez-Chapa SO, Perez-Gonzalez VH. Direct current electrokinetic particle trapping in insulator-based microfluidics: theory and experiments. Submitted, 2020.

Download references

Acknowledgments

The authors would like to thank Dr. Julie Thomas from the Rochester Institute of Technology for the S. enterica strain used in this study.

Funding

The authors received financial support from the National Science Foundation (CBET- 1705895). AOH and AP received support from the National Institutes of Health (NIH) award R15GM120653, and ongoing support from the College of Science and the Thomas H. Gosnell School of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André O. Hudson or Blanca H. Lapizco-Encinas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

Informed consent is not applicable in this study.

Additional information

Published in the topical collection Bioanalytics and Higher Order Electrokinetics with guest editors Mark A. Hayes and Federica Caselli.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll De Peña, A., Miller, A., Lentz, C.J. et al. Creation of an electrokinetic characterization library for the detection and identification of biological cells. Anal Bioanal Chem 412, 3935–3945 (2020). https://doi.org/10.1007/s00216-020-02621-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02621-9

Keywords

Profiles

  1. Adriana Coll De Peña
  2. Anutthaman Parthasarathy