Skip to main content
Log in

Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Persistent and mobile water contaminants are rapidly developing into a focal point of environmental chemistry and chemical regulation. Their defining parameter that sets them apart from the majority of regularly monitored and regulated contaminants is their mobility in the aquatic environment, which is intrinsically tied to a high polarity. This high polarity, however, may have severe implications in the analytical process and thus the most polar of these mobile contaminants may not be covered by widely utilized trace-analytical methods, and thus, alternatives are required. In this review, we infer the physical and chemical properties of mobile water contaminants from a set of almost 1800 prioritized REACH chemicals and discuss the implications these substance properties may have on four integral steps of the analytical process: sampling and sample storage, sample pre-treatment, separation and detection. We discuss alternatives to widely utilized trace-analytical methods, examine their application range and limitations, highlight potential analytical techniques on the horizon and emphasize research areas we believe still offer the most room for further improvement. While we have a comprehensive set of analytical methods to cover a large portion of the known mobile chemicals, these methods are still only infrequently utilized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jensen S, Johnels AG, Olsson M, Otterlind G. DDT and PCB in marine animals from Swedish waters. Nature. 1969;224:247. https://doi.org/10.1038/224247a0.

    Article  CAS  PubMed  Google Scholar 

  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science (Washington D C). 1989;246(4926):64–71. https://doi.org/10.1126/science.2675315.

    Article  CAS  Google Scholar 

  3. Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect. 1999;107:907–38. https://doi.org/10.2307/3434573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41. https://doi.org/10.1002/ieam.258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reemtsma T, Weiss S, Mueller J, Petrovic M, Gonzalez S, Barcelo D, et al. Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol. 2006;40(17):5451–8. https://doi.org/10.1021/es060908a.

    Article  CAS  PubMed  Google Scholar 

  6. Vanden Bilcke C. The Stockholm Convention on persistent organic pollutants. Rev Eur Commun Int Environ Law. 2002;11(3):328–42. https://doi.org/10.1111/1467-9388.00331.

    Article  Google Scholar 

  7. Cousins IT, Ng CA, Wang Z, Scheringer M. Why is high persistence alone a major cause of concern? Environ Sci Process Impacts. 2019;21(5):781–92. https://doi.org/10.1039/C8EM00515J.

    Article  CAS  PubMed  Google Scholar 

  8. Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, et al. Mind the gap: persistent and Mobile organic compounds—water contaminants that slip through. Environ Sci Technol. 2016;50(19):10308–15. https://doi.org/10.1021/acs.est.6b03338.

    Article  CAS  PubMed  Google Scholar 

  9. Neumann M, Schliebner I. Protecting the sources of our drinking water - the criteria for identifying persistent, mobile, and toxic (PMT) substances and very persistent, and very mobile (vPvM) substances under EU REACH Regulations (EC) No 1907/2006. 2019.

  10. Neumann M, Schliebner I. Protecting the sources of our drinking water - a revised proposal for implementing criteria and an assessment procedure to identify persistent, mobile and toxic (PMT) and very persistent, very mobile (vPvM) substances registered under REACH. vol Position. 2017.

  11. Sjerps RMA, Vughs D, van Leerdam JA, ter Laak TL, van Wezel AP. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res. 2016;93:254–64. https://doi.org/10.1016/j.watres.2016.02.034.

    Article  CAS  PubMed  Google Scholar 

  12. Hogenboom AC, van Leerdam JA, de Voogt P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A. 2009;1216(3):510–9. https://doi.org/10.1016/j.chroma.2008.08.053.

    Article  CAS  PubMed  Google Scholar 

  13. Janousek RM, Mayer J, Knepper TP. Is the phase-out of long-chain PFASs measurable as fingerprint in a defined area? Comparison of global PFAS concentrations and a monitoring study performed in Hesse, Germany from 2014 to 2018. Trends Anal Chem. 2019;120:115393. https://doi.org/10.1016/j.trac.2019.01.017.

    Article  CAS  Google Scholar 

  14. Kotthoff M, Bücking M. Four chemical trends will shape the next decade’s directions in perfluoroalkyl and polyfluoroalkyl substances research. Front Chem. 2018;6(103). https://doi.org/10.3389/fchem.2018.00103.

  15. Scheurer M, Nodler K, Freeling F, Janda J, Happel O, Riegel M, et al. Small, mobile, persistent: trifluoroacetate in the water cycle - overlooked sources, pathways, and consequences for drinking water supply. Water Res. 2017;126:460–71. https://doi.org/10.1016/j.watres.2017.09.045.

    Article  CAS  PubMed  Google Scholar 

  16. Björnsdotter MK, Yeung LWY, Kärrman A, Jogsten IE. Ultra-short-chain perfluoroalkyl acids including trifluoromethane sulfonic acid in water connected to known and suspected point sources in Sweden. Environ Sci Technol. 2019;53(19):11093–101. https://doi.org/10.1021/acs.est.9b02211.

    Article  CAS  PubMed  Google Scholar 

  17. Boulard L, Dierkes G, Ternes T. Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: benefits and limitations. J Chromatogr A. 2018;1535:27–43. https://doi.org/10.1016/j.chroma.2017.12.023.

    Article  CAS  PubMed  Google Scholar 

  18. aus der Beek T, Weber F-A, Bergmann A, Hickmann S, Ebert I, Hein A, et al. Pharmaceuticals in the environment—global occurrences and perspectives. Environ Toxicol Chem. 2016;35(4):823–35. https://doi.org/10.1002/etc.3339.

    Article  CAS  PubMed  Google Scholar 

  19. Scheurer M, Michel A, Brauch H-J, Ruck W, Sacher F. Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment. Water Res. 2012;46(15):4790–802. https://doi.org/10.1016/j.watres.2012.06.019.

    Article  CAS  PubMed  Google Scholar 

  20. Kiefer K, Müller A, Singer H, Hollender J. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 2019;165:114972. https://doi.org/10.1016/j.watres.2019.114972.

    Article  CAS  PubMed  Google Scholar 

  21. Kolpin DW, Thurman EM, Lee EA, Meyer MT, Furlong ET, Glassmeyer ST. Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Sci Total Environ. 2006;354(2–3):191–7. https://doi.org/10.1016/j.scitotenv.2005.01.028.

    Article  CAS  PubMed  Google Scholar 

  22. Neuwald I, Zahn D, Knepper TP (manuscript) Are (fluorinated) ionic liquids relevant environmental contaminants? A high-resolution mass spectrometric screening approach for per- and polyfluorinated substances in various matrices led to the detection of a novel fluorinated ionic liquid.

  23. Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80–90. https://doi.org/10.1016/j.watres.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

  24. Montes R, Rodil R, Cela R, Quintana J. Determination of persistent and mobile organic contaminants (PMOCs) in water by mixed-mode liquid chromatography-tandem mass spectrometry. Anal Chem. 2019;91(8):5176–83. https://doi.org/10.1021/acs.analchem.8b05792.

    Article  CAS  PubMed  Google Scholar 

  25. Zahn D, Mucha P, Zilles V, Touffet A, Gallard H, Knepper TP, et al. Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters. Water Res. 2019;150:86–96. https://doi.org/10.1016/j.watres.2018.11.042.

    Article  CAS  PubMed  Google Scholar 

  26. Sieira BJ, Montes R, Touffet A, Rodil R, Cela R, Gallard H, et al. Chlorination and bromination of 1,3-diphenylguanidine and 1,3-di-o-tolylguanidine: kinetics, transformation products and toxicity assessment. J Hazard Mater. 2019;385:121590. https://doi.org/10.1016/j.jhazmat.2019.121590.

    Article  CAS  PubMed  Google Scholar 

  27. Albergamo V, Schollée JE, Schymanski EL, Helmus R, Timmer H, Hollender J, et al. Nontarget screening reveals time trends of polar micropollutants in a riverbank filtration system. Environ Sci Technol. 2019;53(13):7584–94. https://doi.org/10.1021/acs.est.9b01750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaeger A, Posselt M, Betterle A, Schaper J, Mechelke J, Coll C, et al. Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream. Environ Sci Technol. 2019;53(5):2383–95. https://doi.org/10.1021/acs.est.8b05488.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt TC. Recent trends in water analysis triggering future monitoring of organic micropollutants. Anal Bioanal Chem. 2018;410(17):3933–41. https://doi.org/10.1007/s00216-018-1015-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalberlah F, Oltmanns J, Schwarz M, Baumeister J, Striffler A. Guidence for the precautionary protection of raw water destined for drinking water extraction from contaminants regulated under REACH. German Environment Agency; 2015.

  31. Arp HPH, Brown TN, Berger U, Hale SE. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ Sci Process Impacts. 2017;19(7):939–55. https://doi.org/10.1039/C7EM00158D.

    Article  CAS  PubMed  Google Scholar 

  32. Boxall ABA, Sinclair CJ, Fenner K, Kolpin D, Maund SJ. Peer reviewed: when synthetic chemicals degrade in the environment. Environ Sci Technol. 2004;38(19):368A–75A. https://doi.org/10.1021/es040624v.

    Article  CAS  PubMed  Google Scholar 

  33. Vrana B, Allan IJ, Greenwood R, Mills GA, Dominiak E, Svensson K, et al. Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem. 2005;24(10):845–68. https://doi.org/10.1016/j.trac.2005.06.006.

    Article  CAS  Google Scholar 

  34. Huckins JN, Manuweera GK, Petty JD, Mackay D, Lebo JA. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ Sci Technol. 1993;27(12):2489–96. https://doi.org/10.1021/es00048a028.

    Article  CAS  Google Scholar 

  35. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem. 2004;23(7):1640–8. https://doi.org/10.1897/03-603.

    Article  CAS  PubMed  Google Scholar 

  36. Abtew W, Powell B. Water quality sampling schemes for variable flow canals at remote sites 1. J Am Water Resour Assoc. 2004;40(5):1197–204. https://doi.org/10.1111/j.1752-1688.2004.tb01579.x.

    Article  Google Scholar 

  37. Schaeffer DJ, Janardan KG. Theoretical comparison of grab and composite sampling programs. Biom J. 1978;20(3):215–27. https://doi.org/10.1002/bimj.4710200303.

    Article  Google Scholar 

  38. Chen Y, Guo ZP, Wang XY, Qiu CG. Sample preparation. J Chromatogr A. 2008;1184(1–2):191–219. https://doi.org/10.1016/j.chroma.2007.10.026.

    Article  CAS  PubMed  Google Scholar 

  39. Nováková L, Havlíková L, Vlčková H. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. Trends Anal Chem. 2014;63:55–64. https://doi.org/10.1016/j.trac.2014.08.004.

    Article  CAS  Google Scholar 

  40. Krauss M, Singer H, Hollender J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397(3):943–51.

    Article  CAS  Google Scholar 

  41. Bauer KH, Knepper TP, Maes A, Schatz V, Voihsel M. Analysis of polar organic micropollutants in water with ion chromatography electrospray mass spectrometry. J Chromatogr A. 1999;837(1–2):117–28. https://doi.org/10.1016/s0021-9673(99)00048-5.

    Article  CAS  PubMed  Google Scholar 

  42. Albergamo V, Helmus R, de Voogt P. Direct injection analysis of polar micropollutants in natural drinking water sources with biphenyl liquid chromatography coupled to high-resolution time-of-flight mass spectrometry. J Chromatogr A. 2018;1569:53–61. https://doi.org/10.1016/j.chroma.2018.07.036.

    Article  CAS  PubMed  Google Scholar 

  43. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerda V. Solid-phase extraction of organic compounds: a critical review (part I). Trends Anal Chem. 2016;80:641–54. https://doi.org/10.1016/j.trac.2015.08.015.

    Article  CAS  Google Scholar 

  44. Chau HTC, Kadokami K, Ifuku T, Yoshida Y. Development of a comprehensive screening method for more than 300 organic chemicals in water samples using a combination of solid-phase extraction and liquid chromatography-time-of-flight-mass spectrometry. Environ Sci Pollut Res. 2017;24(34):26396–409. https://doi.org/10.1007/s11356-017-9929-x.

    Article  CAS  Google Scholar 

  45. Dias NC, Poole CF. Mechanistic study of the sorption properties of OASIS® HLB and its use in solid-phase extraction. Chromatographia. 2002;56(5):269–75. https://doi.org/10.1007/bf02491931.

    Article  CAS  Google Scholar 

  46. Fontanals N, Marcé RM, Borrull F. New materials in sorptive extraction techniques for polar compounds. J Chromatogr A. 2007;1152(1):14–31. https://doi.org/10.1016/j.chroma.2006.11.077.

    Article  CAS  PubMed  Google Scholar 

  47. Barbieri MV, Postigo C, Monllor-Alcaraz LS, Barceló D, López de Alda M. A reliable LC-MS/MS-based method for trace level determination of 50 medium to highly polar pesticide residues in sediments and ecological risk assessment. Anal Bioanal Chem. 2019;411(30):7981–96. https://doi.org/10.1007/s00216-019-02188-0.

    Article  CAS  PubMed  Google Scholar 

  48. Liu F, Bischoff G, Pestemer W, Xu W, Kofoet A. Multi-residue analysis of some polar pesticides in water samples with SPE and LC–MS–MS. Chromatographia. 2006;63(5):233–7. https://doi.org/10.1365/s10337-006-0725-x.

    Article  CAS  Google Scholar 

  49. Loos R, Locoro G, Contini S. Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res. 2010;44(7):2325–35. https://doi.org/10.1016/j.watres.2009.12.035.

    Article  CAS  PubMed  Google Scholar 

  50. Pichon V, Chen L, Guenu S, Hennion MC. Comparison of sorbents for the solid-phase extraction of the highly polar degradation products of atrazine (including ammeline, ammelide and cyanuric acid). J Chromatogr A. 1995;711(2):257–67. https://doi.org/10.1016/0021-9673(95)00527-T.

    Article  CAS  Google Scholar 

  51. West C, Elfakir C, Lafosse M. Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A. 2010;1217(19):3201–16. https://doi.org/10.1016/j.chroma.2009.09.052.

    Article  CAS  PubMed  Google Scholar 

  52. Di Corcia A, Marchetti M. Multiresidue method for pesticides in drinking water using a graphitized carbon black cartridge extraction and liquid chromatographic analysis. Anal Chem. 1991;63(6):580–5. https://doi.org/10.1021/ac00006a007.

    Article  PubMed  Google Scholar 

  53. Lee C, Schmidt C, Yoon J, von Gunten U. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: kinetics and effect on NDMA formation potential. Environ Sci Technol. 2007;41(6):2056–63. https://doi.org/10.1021/es062484q.

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt CK, Brauch H-J. N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ Sci Technol. 2008;42(17):6340–6. https://doi.org/10.1021/es7030467.

    Article  CAS  PubMed  Google Scholar 

  55. Carneiro MC, Puignou L, Galceran MT. Comparison of silica and porous graphitic carbon as solid-phase extraction materials for the analysis of cationic herbicides in water by liquid chromatography and capillary electrophoresis. Anal Chim Acta. 2000;408(1):263–9. https://doi.org/10.1016/S0003-2670(99)00830-2.

    Article  CAS  Google Scholar 

  56. Hennion M-C. Graphitized carbons for solid-phase extraction. J Chromatogr A. 2000;885(1):73–95. https://doi.org/10.1016/S0021-9673(00)00085-6.

    Article  CAS  PubMed  Google Scholar 

  57. Yu Z, Jin F, Hu J, Zhang X, Sun J, Yang M. An improved method for analyzing chlormequat and mepiquat in source waters by solid-phase extraction and liquid chromatography–mass spectrometry. Anal Chim Acta. 2010;678(1):90–5. https://doi.org/10.1016/j.aca.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  58. Knepper TP, Werner A, Bogenschutz G. Determination of synthetic chelating agents in surface and waste water by ion chromatography-mass spectrometry. J Chromatogr A. 2005;1085(2):240–6. https://doi.org/10.1016/j.chroma.2005.06.045.

    Article  CAS  PubMed  Google Scholar 

  59. Vughs D, Baken KA, Dingemans MML, de Voogt P. The determination of two emerging perfluoroalkyl substances and related halogenated sulfonic acids and their significance for the drinking water supply chain. Environ Sci Process Impacts. 2019;21(11):1899–907. https://doi.org/10.1039/C9EM00393B.

    Article  CAS  PubMed  Google Scholar 

  60. Bieber S, Greco G, Grosse S, Letzel T. RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal Chem. 2017;89(15):7907–14. https://doi.org/10.1021/acs.analchem.7b00859.

    Article  CAS  PubMed  Google Scholar 

  61. Deeb AA, Schmidt TC. Tandem anion and cation exchange solid phase extraction for the enrichment of micropollutants and their transformation products from ozonation in a wastewater treatment plant. Anal Bioanal Chem. 2016;408(16):4219–32. https://doi.org/10.1007/s00216-016-9523-y.

    Article  CAS  PubMed  Google Scholar 

  62. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J. Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol. 2009;43(18):7039–46. https://doi.org/10.1021/es901979h.

    Article  CAS  PubMed  Google Scholar 

  63. Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2012;1268:74–83. https://doi.org/10.1016/j.chroma.2012.10.032.

    Article  CAS  PubMed  Google Scholar 

  64. Zahn D, Meusinger R, Frömel T, Knepper TP. Halomethanesulfonic acids - a new class of polar disinfection by-products: standard synthesis, occurrence, and indirect assessment of mitigation options. Environ Sci Technol. 2019;53(15):8994–9002. https://doi.org/10.1021/acs.est.9b03016.

    Article  CAS  PubMed  Google Scholar 

  65. Köke N, Zahn D, Knepper TP, Frömel T. Multi-layer solid-phase extraction and evaporation—enrichment methods for polar organic chemicals from aqueous matrices. Anal Bioanal Chem. 2018;410(9):2403–11. https://doi.org/10.1007/s00216-018-0921-1.

    Article  CAS  PubMed  Google Scholar 

  66. Montes R, Aguirre J, Vidal X, Rodil R, Cela R, Quintana JB. Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry. Environ Sci Technol. 2017;51(11):6250–9. https://doi.org/10.1021/acs.est.6b05135.

    Article  CAS  PubMed  Google Scholar 

  67. Mechelke J, Longrée P, Singer H, Hollender J. Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Anal Bioanal Chem. 2019;411(12):2555–67. https://doi.org/10.1007/s00216-019-01696-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zahn D, Frömel T, Knepper TP. Halogenated methanesulfonic acids: a new class of organic micropollutants in the water cycle. Water Res. 2016;101:292–9. https://doi.org/10.1016/j.watres.2016.05.082.

    Article  CAS  PubMed  Google Scholar 

  69. Schulze S, Paschke H, Meier T, Muschket M, Reemtsma T, Berger U (manuscript) Quantification of persistent and mobile organic substances in water using supercritical fluid chromatography coupled to high-resolution mass spectrometry.

  70. Knepper TP. Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends Anal Chem. 2003;22(10):708–24. https://doi.org/10.1016/s0165-9936(03)01008-2.

    Article  CAS  Google Scholar 

  71. Clark KD, Emaus MN, Varona M, Bowers AN, Anderson JL. Ionic liquids: solvents and sorbents in sample preparation. J Sep Sci. 2018;41(1):209–35. https://doi.org/10.1002/jssc.201700864.

    Article  CAS  PubMed  Google Scholar 

  72. Tamayo F, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A. 2007;1152(1):32–40. https://doi.org/10.1016/j.chroma.2006.08.095.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang B-T, Zheng X, Li H-F, Lin J-M. Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta. 2013;784:1–17. https://doi.org/10.1016/j.aca.2013.03.054.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang S, Yang Q, Wang C, Luo X, Kim J, Wang Z, et al. Porous organic frameworks: advanced materials in analytical chemistry. Adv Sci. 2018;5(12):1801116. https://doi.org/10.1002/advs.201801116.

    Article  CAS  Google Scholar 

  75. Gu Z-Y, Yang C-X, Chang N, Yan X-P. Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res. 2012;45(5):734–45. https://doi.org/10.1021/ar2002599.

    Article  CAS  PubMed  Google Scholar 

  76. Plotka-Wasylka J, Szczepanska N, de la Guardia M, Namiesnik J. Modern trends in solid phase extraction: new sorbent media. Trends Anal Chem. 2016;77:23–43. https://doi.org/10.1016/j.trac.2015.10.010.

    Article  CAS  Google Scholar 

  77. Angeles LF, Aga DS. Catching the elusive persistent and mobile organic compounds: novel sample preparation and advanced analytical techniques. Trends Environ Anal Chem. 2019:e00078. https://doi.org/10.1016/j.teac.2019.e00078.

  78. Zhao H. Innovative applications of ionic liquids as “green” engineering liquids. Chem Eng Commun. 2006;193(12):1660–77. https://doi.org/10.1080/00986440600586537.

    Article  CAS  Google Scholar 

  79. Steinborn A, Alder L, Michalski B, Zomer P, Bendig P, Martinez SA, et al. Determination of glyphosate levels in breast milk samples from Germany by LC-MS/MS and GC-MS/MS. J Agric Food Chem. 2016;64(6):1414–21. https://doi.org/10.1021/acs.jafc.5b05852.

    Article  CAS  PubMed  Google Scholar 

  80. Zoccolillo L, Amendola L, Cafaro C, Insogna S. Improved analysis of volatile halogenated hydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometric detection. J Chromatogr A. 2005;1077(2):181–7. https://doi.org/10.1016/j.chroma.2005.04.076.

    Article  CAS  PubMed  Google Scholar 

  81. Wang J, Wang C, Guo Z, Dong X, Xiao Y, Xue X, et al. A novel method for characterization and comparison of reversed-phase column selectivity. J Chromatogr A. 2014;1361:153–61. https://doi.org/10.1016/j.chroma.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  82. Jandera P, Hajek T. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review. J Sep Sci. 2018;41(1):145–62. https://doi.org/10.1002/jssc.201701010.

    Article  CAS  PubMed  Google Scholar 

  83. Nguyen HP, Schug KA. The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci. 2008;31(9):1465–80. https://doi.org/10.1002/jssc.200700630.

    Article  CAS  PubMed  Google Scholar 

  84. Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A. 1990;499(0):177–96. https://doi.org/10.1016/S0021-9673(00)96972-3.

    Article  CAS  Google Scholar 

  85. Jandera P. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. J Sep Sci. 2008;31(9):1421–37. https://doi.org/10.1002/jssc.200800051.

    Article  CAS  PubMed  Google Scholar 

  86. Jandera P. Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta. 2011;692(1–2):1–25. https://doi.org/10.1016/j.aca.2011.02.047.

    Article  CAS  PubMed  Google Scholar 

  87. Isokawa M, Funatsu T, Tsunoda M. Evaluation of the effects of sample dilution and volume in hydrophilic interaction liquid chromatography. Chromatographia. 2014;77(21–22):1553–6. https://doi.org/10.1007/s10337-014-2748-z.

    Article  CAS  Google Scholar 

  88. Hemstrom P, Irgum K. Hydrophilic interaction chromatography. J Sep Sci. 2006;29(12):1784–821. https://doi.org/10.1002/jssc.200600199.

    Article  CAS  PubMed  Google Scholar 

  89. Greco G, Letzel T. Main interactions and influences of the chromatographic parameters in HILIC separations. J Chromatogr Sci. 2013;51(7):684–93. https://doi.org/10.1093/chromsci/bmt015.

    Article  CAS  PubMed  Google Scholar 

  90. Dinh NP, Jonsson T, Irgum K. Probing the interaction mode in hydrophilic interaction chromatography. J Chromatogr A. 2011;1218(35):5880–91. https://doi.org/10.1016/j.chroma.2011.06.037.

    Article  CAS  PubMed  Google Scholar 

  91. Backe WJ, Yingling V, Johnson T. The determination of acrylamide in environmental and drinking waters by large-volume injection - hydrophilic-interaction liquid chromatography and tandem mass spectrometry. J Chromatogr A. 2014;1334:72–8. https://doi.org/10.1016/j.chroma.2014.02.005.

    Article  CAS  PubMed  Google Scholar 

  92. Hayama T, Yoshida H, Todoroki K, Nohta H, Yamaguchi M. Determination of polar organophosphorus pesticides in water samples by hydrophilic interaction liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(14):2203–10. https://doi.org/10.1002/rcm.3573.

    Article  CAS  PubMed  Google Scholar 

  93. Seitz W, Schulz W, Winzenbacher R. Advantage of liquid chromatography with high-resolution mass spectrometry for the detection of the small and polar molecules trifluoroacetic acid and sulfamic acid. J Sep Sci. 2018;41(24):4437–48. https://doi.org/10.1002/jssc.201800723.

    Article  CAS  PubMed  Google Scholar 

  94. Tang Y, Xu Y, Li F, Jmaiff L, Hrudey SE, Li X-F. Nontargeted identification of peptides and disinfection byproducts in water. J Environ Sci. 2016;42:259–66. https://doi.org/10.1016/j.jes.2015.08.007.

    Article  CAS  Google Scholar 

  95. Gheorghe A, van Nuijs A, Pecceu B, Bervoets L, Jorens PG, Blust R, et al. Analysis of cocaine and its principal metabolites in waste and surface water using solid-phase extraction and liquid chromatography–ion trap tandem mass spectrometry. Anal Bioanal Chem. 2008;391(4):1309–19. https://doi.org/10.1007/s00216-007-1754-5.

    Article  CAS  PubMed  Google Scholar 

  96. Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 2015;49(20):12333–41. https://doi.org/10.1021/acs.est.5b03454.

    Article  CAS  PubMed  Google Scholar 

  97. Barron L, Gilchrist E. Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis. Anal Chim Acta. 2014;806:27–54. https://doi.org/10.1016/j.aca.2013.10.047.

    Article  CAS  PubMed  Google Scholar 

  98. Reemtsma T. Liquid chromatography-mass spectrometry and strategies for trace-level analysis of polar organic pollutants. J Chromatogr A. 2003;1000(1–2):477–501. https://doi.org/10.1016/s0021-9673(03)00507-7.

    Article  CAS  PubMed  Google Scholar 

  99. Armbruster D, Rott E, Minke R, Happel O. Trace-level determination of phosphonates in liquid and solid phase of wastewater and environmental samples by IC-ESI-MS/MS. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-02159-5.

  100. Haddad PR, Nesterenko PN, Buchberger W. Recent developments and emerging directions in ion chromatography. J Chromatogr A. 2008;1184(1–2):456–73. https://doi.org/10.1016/j.chroma.2007.10.022.

    Article  CAS  PubMed  Google Scholar 

  101. Jansons M, Pugajeva I, Bartkevics V. Evaluation of selected buffers for simultaneous determination of ionic and acidic pesticides including glyphosate using anion exchange chromatography with mass spectrometric detection. J Sep Sci. 2019;42(19):3077–85. https://doi.org/10.1002/jssc.201900308.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang L, Dai Q, Qiao XQ, Yu CY, Qin XY, Yan HY. Mixed-mode chromatographic stationary phases: recent advancements and its applications for high-performance liquid chromatography. Trends Anal Chem. 2016;82:143–63. https://doi.org/10.1016/j.trac.2016.05.011.

    Article  CAS  Google Scholar 

  103. Liu X, Pohl C. New hydrophilic interaction/reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants. J Chromatogr A. 2008;1191(1):83–9. https://doi.org/10.1016/j.chroma.2007.12.012.

    Article  CAS  PubMed  Google Scholar 

  104. Wang LJ, Wei WL, Xia ZN, Jie X, Xia ZZL. Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trends Anal Chem. 2016;80:495–506. https://doi.org/10.1016/j.trac.2016.04.001.

    Article  CAS  Google Scholar 

  105. Liu X, Pohl C, Woodruff A, Chen J. Chromatographic evaluation of reversed-phase/anion-exchange/cation-exchange trimodal stationary phases prepared by electrostatically driven self-assembly process. J Chromatogr A. 2011;1218(22):3407–12. https://doi.org/10.1016/j.chroma.2011.03.035.

    Article  CAS  PubMed  Google Scholar 

  106. Gao L, Shi Y, Li W, Ren W, Liu J, Cai Y. Determination of organophosphate esters in water samples by mixed-mode liquid chromatography and tandem mass spectrometry. J Sep Sci. 2015;38(13):2193–200. https://doi.org/10.1002/jssc.201500213.

    Article  CAS  PubMed  Google Scholar 

  107. Lesellier E. Retention mechanisms in super/subcritical fluid chromatography on packed columns. J Chromatogr A. 2009;1216(10):1881–90. https://doi.org/10.1016/j.chroma.2008.10.081.

    Article  CAS  PubMed  Google Scholar 

  108. Tyskiewicz K, Debczak A, Gieysztor R, Szymczak T, Roj E. Determination of fat-and water-soluble vitamins by supercritical fluid chromatography: a review. J Sep Sci. 2018;41(1):336–50. https://doi.org/10.1002/jssc.201700598.

    Article  CAS  PubMed  Google Scholar 

  109. Lesellier E, West C. The many faces of packed column supercritical fluid chromatography - a critical review. J Chromatogr A. 2015;1382:2–46. https://doi.org/10.1016/j.chroma.2014.12.083.

    Article  CAS  PubMed  Google Scholar 

  110. Baker LR, Stark MA, Orton AW, Horn BA, Goates SR. Density gradients in packed columns: I. effects of density gradients on retention and separation speed. J Chromatogr A. 2009;1216(29):5588–93. https://doi.org/10.1016/j.chroma.2009.05.042.

    Article  CAS  PubMed  Google Scholar 

  111. Baker LR, Orton AW, Stark MA, Goates SR. Density gradients in packed columns: II. Effects of density gradients on efficiency in supercritical fluid separations. J Chromatogr A. 2009;1216(29):5594–9. https://doi.org/10.1016/j.chroma.2009.05.078.

    Article  CAS  PubMed  Google Scholar 

  112. Tarafder A, Guiochon G. Use of isopycnic plots in designing operations of supercritical fluid chromatography: II. The isopycnic plots and the selection of the operating pressure–temperature zone in supercritical fluid chromatography. J Chromatogr A. 2011;1218(28):4576–85. https://doi.org/10.1016/j.chroma.2011.05.041.

    Article  CAS  PubMed  Google Scholar 

  113. Brondz I, Sedunov B, Sivaraman N. Influence of modifiers on supercritical fluid chromatography (SFC) and supercritical fluid extraction (SFE), Part I. Int J Anal Mass Spectrom. 2017;5:17–39. https://doi.org/10.4236/ijamsc.2017.52002.

    Article  CAS  Google Scholar 

  114. Tarafder A. Metamorphosis of supercritical fluid chromatography to SFC: an overview. Trends Anal Chem. 2016;81:3–10. https://doi.org/10.1016/j.trac.2016.01.002.

    Article  CAS  Google Scholar 

  115. Desfontaine V, Losacco GL, Gagnebin Y, Pezzatti J, Farrell WP, Gonzalez-Ruiz V, et al. Applicability of supercritical fluid chromatography - mass spectrometry to metabolomics. I - optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances. J Chromatogr A. 2018;1562:96–107. https://doi.org/10.1016/j.chroma.2018.05.055.

    Article  CAS  Google Scholar 

  116. Shulaev V, Isaac G. Supercritical fluid chromatography coupled to mass spectrometry - a metabolomics perspective. J Chromatogr B. 2018;1092:499–505. https://doi.org/10.1016/j.jchromb.2018.06.021.

    Article  CAS  Google Scholar 

  117. Haglind A, Hedeland M, Arvidsson T, Pettersson CE. Major signal suppression from metal ion clusters in SFC/ESI-MS - cause and effects. J Chromatogr B. 2018;1084:96–105. https://doi.org/10.1016/j.jchromb.2018.03.024.

    Article  CAS  Google Scholar 

  118. Desfontaine V, Capetti F, Nicoli R, Kuuranne T, Veuthey J-L, Guillarme D. Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid chromatography coupled to mass spectrometry for biological samples. J Chromatogr B. 2018;1079:51–61. https://doi.org/10.1016/j.jchromb.2018.01.037.

    Article  CAS  Google Scholar 

  119. Yeung LWY, Stadey C, Mabury SA. Simultaneous analysis of perfluoroalkyl and polyfluoroalkyl substances including ultrashort-chain C2 and C3 compounds in rain and river water samples by ultra performance convergence chromatography. J Chromatogr A. 2017;1522:78–85. https://doi.org/10.1016/j.chroma.2017.09.049.

    Article  CAS  PubMed  Google Scholar 

  120. Desfontaine V, Guillarme D, Francotte E, Novakova L. Supercritical fluid chromatography in pharmaceutical analysis. J Pharm Biomed Anal. 2015;113:56–71. https://doi.org/10.1016/j.jpba.2015.03.007.

    Article  CAS  PubMed  Google Scholar 

  121. Tagliaro F, Manetto G, Crivellente F, Smith FP. A brief introduction to capillary electrophoresis. Forensic Sci Int. 1998;92(2):75–88. https://doi.org/10.1016/S0379-0738(98)00010-3.

    Article  CAS  Google Scholar 

  122. Martínez D, Cugat MJ, Borrull F, Calull M. Solid-phase extraction coupling to capillary electrophoresis with emphasis on environmental analysis. J Chromatogr A. 2000;902(1):65–89. https://doi.org/10.1016/S0021-9673(00)00839-6.

    Article  PubMed  Google Scholar 

  123. Posch TN, Pütz M, Martin N, Huhn C. Electromigrative separation techniques in forensic science: combining selectivity, sensitivity, and robustness. Anal Bioanal Chem. 2015;407(1):23–58. https://doi.org/10.1007/s00216-014-8271-0.

    Article  CAS  PubMed  Google Scholar 

  124. Stolz A, Jooss K, Hocker O, Romer J, Schlecht J, Neususs C. Recent advances in capillary electrophoresis-mass spectrometry: instrumentation, methodology and applications. Electrophoresis. 2019;40(1):79–112. https://doi.org/10.1002/elps.201800331.

    Article  CAS  PubMed  Google Scholar 

  125. Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary electrophoresis: trends and recent advances. Anal Chem. 2018;90(3):1464–81. https://doi.org/10.1021/acs.analchem.8b00015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stutz H, Pittertschatscher K, Malissa H. Capillary zone electrophoretic determination of hydroxymetabolites of atrazine in potable water using solid-phase extraction with Amberchrom resins. Microchim Acta. 1998;128(1):107–17. https://doi.org/10.1007/bf01242197.

    Article  CAS  Google Scholar 

  127. Malá Z, Gebauer P. Capillary moving-boundary isotachophoresis with electrospray ionization mass-spectrometric detection and hydrogen ion used as essential terminator: methodology for sensitive analysis of hydroxyderivatives of s-triazine herbicides in waters. J Chromatogr A. 2017;1518:97–103. https://doi.org/10.1016/j.chroma.2017.08.074.

    Article  CAS  PubMed  Google Scholar 

  128. Krynitsky AJ. Determination of sulfonylurea herbicides in water by capillary electrophoresis and by liquid chromatography/mass spectrometry. J AOAC Int. 1997;80(2):392–400.

    Article  CAS  Google Scholar 

  129. Martínez D, Borrull F, Calull M. Comparative study of a solid-phase extraction system coupled to capillary electrophoresis in the determination of haloacetic compounds in tap water. J Chromatogr A. 1998;827(1):105–12. https://doi.org/10.1016/S0021-9673(98)00752-3.

    Article  PubMed  Google Scholar 

  130. Sheppard RL, Henion J. Determination of ethylenediaminetetraacetic acid as the nickel chelate in environmental water by solid-phase extraction and capillary electrophoresis/tandem mass spectrometry. Electrophoresis. 1997;18(2):287–91. https://doi.org/10.1002/elps.1150180218.

    Article  CAS  PubMed  Google Scholar 

  131. Purschke K, Zoell C, Leonhardt J, Weber M, Schmidt TC. Identification of unknowns in industrial wastewater using offline 2D chromatography and non-target screening. Sci Total Environ. 2019:135835. https://doi.org/10.1016/j.scitotenv.2019.135835.

  132. Yang W, Zhang J, Yao C, Qiu S, Chen M, Pan H, et al. Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong injection. J Pharm Biomed Anal. 2016;128:322–32. https://doi.org/10.1016/j.jpba.2016.05.035.

    Article  CAS  PubMed  Google Scholar 

  133. Hernández F, Sancho JV, Pozo OJ. Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal Bioanal Chem. 2005;382(4):934–46. https://doi.org/10.1007/s00216-005-3185-5.

    Article  CAS  PubMed  Google Scholar 

  134. Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001;20(6):362–87. https://doi.org/10.1002/mas.10008.

    Article  CAS  PubMed  Google Scholar 

  135. Kebarle P, Peschke M. On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal Chim Acta. 2000;406(1):11–35. https://doi.org/10.1016/s0003-2670(99)00598-x.

    Article  CAS  Google Scholar 

  136. Cech NB, Enke CG. Relating electrospray ionization response to nonpolar character of small peptides. Anal Chem. 2000;72(13):2717–23. https://doi.org/10.1021/ac9914869.

    Article  CAS  PubMed  Google Scholar 

  137. Cech NB, Krone JR, Enke CG. Predicting electrospray response from chromatographic retention time. Anal Chem. 2001;73(2):208–13. https://doi.org/10.1021/ac0006019.

    Article  CAS  PubMed  Google Scholar 

  138. Lapthorn C, Pullen F, Chowdhry BZ. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev. 2013;32(1):43–71. https://doi.org/10.1002/mas.21349.

    Article  CAS  PubMed  Google Scholar 

  139. Ahmed E, Mohibul Kabir KM, Wang H, Xiao D, Fletcher J, Donald WA. Rapid separation of isomeric perfluoroalkyl substances by high-resolution differential ion mobility mass spectrometry. Anal Chim Acta. 2019;1058:127–35. https://doi.org/10.1016/j.aca.2019.01.038.

    Article  CAS  PubMed  Google Scholar 

  140. Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev. 2011;30(3):491–509. https://doi.org/10.1002/mas.20298.

    Article  CAS  PubMed  Google Scholar 

  141. Müller K, Zahn D, Frömel T, Knepper TP (manuscript) Matrix effects in the analysis of polar organic water contaminants with HILIC-ESI-MS.

  142. Vass A, Robles-Molina J, Pérez-Ortega P, Gilbert-López B, Dernovics M, Molina-Díaz A, et al. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides. Anal Bioanal Chem. 2016;408(18):4857–69. https://doi.org/10.1007/s00216-016-9589-6.

    Article  CAS  PubMed  Google Scholar 

  143. Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol. 2017;51(20):11505–12. https://doi.org/10.1021/acs.est.7b02184.

    Article  CAS  PubMed  Google Scholar 

  144. Brack W, Aissa SA, Backhaus T, Dulio V, Escher BI, Faust M, et al. Effect-based methods are key. The European collaborative project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Eur. 2019;31(1):10. https://doi.org/10.1186/s12302-019-0192-2.

    Article  Google Scholar 

  145. Nödler K, Scheurer M. Substances from multiple sources (SMS): the presence of multiple primary and secondary sources of persistent and mobile organic contaminants is an upcoming challenge for the drinking water sector and regulatory frameworks. Environ Sci Technol. 2019;53(19):11061–2. https://doi.org/10.1021/acs.est.9b05168.

    Article  CAS  PubMed  Google Scholar 

  146. Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Anal Chem. 2015;66:32–44. https://doi.org/10.1016/j.trac.2014.11.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the BMBF for funding the PROTECT project (FKZ: 02WRS1495B), all project partners, and Dr. Tobias Frömel (Hochschule Fresenius, University of Applied Scienes) for his valuable input during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Persistent and Mobile Organic Compounds – An Environmental Challenge with guest editors Torsten C. Schmidt, Thomas P. Knepper, and Thorsten Reemtsma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahn, D., Neuwald, I.J. & Knepper, T.P. Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives. Anal Bioanal Chem 412, 4763–4784 (2020). https://doi.org/10.1007/s00216-020-02520-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02520-z

Keywords

Navigation