Skip to main content
Log in

A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coulter WH. Means for counting particles suspended in a fluid. US 2656508 A, 1953.

  2. Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, et al. Microfluidic impedance-based flow cytometry. Cytom Part A. 2010;77(7):648–66. Available from: https://doi.org/10.1002/cyto.a.20910.

    Article  CAS  Google Scholar 

  3. Petchakup C, Li KHH, Hou HW. Advances in single cell impedance cytometry for biomedical applications. Micromachines. 2017;8(3):87. Available from: https://doi.org/10.3390/mi8030087.

    Article  PubMed Central  Google Scholar 

  4. Vembadi A, Menachery A, Qasaimeh MA. Cell cytometry: review and perspective on biotechnological advances. Front Bioeng Biotechnol. 2019;7:147. Available from: https://doi.org/10.3389/fbioe.2019.00147.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gawad S, Cheung K, Seger U, Bertsch A, Renaud P. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip. 2004;4(3):241–51. Available from: https://doi.org/10.1039/B313761A.

    Article  PubMed  CAS  Google Scholar 

  6. Reale R, De Ninno A, Businaro L, Bisegna P, Caselli F. Electrical measurement of cross-sectional position of particles flowing through a microchannel. Microfluid Nanofluid. 2018;22(41):1–13. Available from: https://doi.org/10.1007/s10404-018-2055-3.

    Article  CAS  Google Scholar 

  7. Reale R, De Ninno A, Businaro L, Bisegna P, Caselli F. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape. Lab Chip. 2019;19(10):1818–27. Available from: https://doi.org/10.1039/C9LC00071B.

    Article  PubMed  CAS  Google Scholar 

  8. McGrath J, Reale R, Honrado C, Bisegna P, Swami N, Caselli F. Towards real-time multiparametric impedance cytometry. In: 23nd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019). 2019.

  9. Sun T, van Berkel C, Green NG, Morgan H. Digital signal processing methods for impedance microfluidic cytometry. Microfluid Nanofluid. 2009;6(2):179–87. Available from: https://doi.org/10.1007/s10404-008-0315-3.

    Article  CAS  Google Scholar 

  10. Evander M, Ricco AJ, Morser J, Kovacs GTA, Leung LLK, Giovangrandi L. Microfluidic impedance cytometer for platelet analysis. Lab Chip. 2013;13(4):722–9. Available from: https://doi.org/10.1039/C2LC40896A.

    Article  PubMed  CAS  Google Scholar 

  11. Caselli F, Bisegna P. A simple and robust event-detection algorithm for single-cell impedance cytometry. IEEE Trans Biomed Eng. 2016;63(2):415–22. Available from: https://doi.org/10.1109/TBME.2015.2462292.

    Article  PubMed  Google Scholar 

  12. Guo J, Chen Z, Ban Y, Kang Y. Precise enumeration of circulating tumor cells using support vector machine algorithm on a microfluidic sensor. IEEE Trans Emerg Top Comput. 2014;5(4):518–25. Available from: https://doi.org/10.1109/TETC.2014.2335539.

    Article  Google Scholar 

  13. Ahuja K, Rather GM, Lin Z, Sui J, Xie P, Le T, et al. Toward point-of-care assessment of patient response: a portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning. Microsyst Nanoeng. 2019;5(1):34. Available from: https://doi.org/10.1038/s41378-019-0073-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen J, Xue C, Zhao Y, Chen D, Wu MH, Wang J. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci. 2015;16(5):9804–30. Available from: https://doi.org/10.3390/ijms16059804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhao Y, Wang K, Chen D, Fan B, Xu Y, Ye Y, et al. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. Biosens Bioelectron. 2018;111:138–43. Available from: http://www.sciencedirect.com/science/article/pii/S0956566318302756.

    Article  CAS  PubMed  Google Scholar 

  16. Furniturewalla A, Chan M, Sui J, Ahuja K, Javanmard M. Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout. Microsyst Nanoeng. 2018;4(1):20. Available from: https://doi.org/10.1038/s41378-018-0019-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brazey B, Cottet J, Bolopion A, Van Lintel H, Renaud P, Gauthier M. Impedance-based real-time position sensor for lab-on-a-chip devices. Lab Chip. 2018;18(5):818–31. Available from: https://doi.org/10.1039/C7LC01344B.

    Article  PubMed  CAS  Google Scholar 

  18. Saateh A, Kalantarifard A, Celik OT, Asghari M, Serhatlioglu M, Elbuken C. Real-time impedimetric droplet measurement (iDM). Lab Chip. 2019;19(22):3815–24. Available from: https://doi.org/10.1039/C9LC00641A.

    Article  PubMed  CAS  Google Scholar 

  19. Farmehini V, Varhue W, Salahi A, Hyler AR, Čemažar J, Davalos R, Swami NS. On-chip impedance for quantifying parasitic voltages during AC electrokinetic trapping. IEEE Trans Biomed Eng 2019. Available from: https://doi.org/10.1109/TBME.2019.2942572.

  20. Rohani A, Sanghavi BJ, Salahi A, Liao K-TT, Chou C-FF, Swami NS. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. Nanoscale. 2017;9(33):12124–31. Available from: https://doi.org/10.1039/C7NR02376F.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McGrath JS, Honrado C, Moore JH, Adair SJ, Varhue WB, Salahi A, Farmehini V, Goudreau BJ, Nagdas S, Blais EM, Bauer TW, Swami NS. Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry. Anal Chim Acta. 2020;1101:90–8. Available from: https://doi.org/10.1016/j.aca.2019.12.033.

  22. Riordon J, Sovilj D, Sanner S, Sinton D, Young EWK. Deep learning with microfluidics for biotechnology. Trends Biotechnol. 2019;37(3):310–24. Available from: http://www.sciencedirect.com/science/article/pii/S0167779918302452.

    Article  CAS  PubMed  Google Scholar 

  23. Chu A, Nguyen D, Talathi SS, Wilson AC, Ye C, Smith WL, et al. Automated detection and sorting of microencapsulation via machine learning. Lab Chip. 2019;19(10):1808–17. Available from: https://doi.org/10.1039/C8LC01394B.

    Article  PubMed  CAS  Google Scholar 

  24. Heo YJ, Lee D, Kang J, Lee K, Chung WK. Real-time image processing for microscopy-based label-free imaging flow cytometry in a microfluidic chip. Sci Rep. 2017;7(1):11651. Available from: https://doi.org/10.1038/s41598-017-11534-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, et al. Intelligent image-activated cell sorting. Cell. 2018;175(1):266–276.e13. Available from: http://www.sciencedirect.com/science/article/pii/S0092867418310444.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta A, Harrison PJ, Wieslander H, Pielawski N, Kartasalo K, Partel G, et al. Deep learning in image cytometry: a review. Cytom Part A. 2019;95(4):366–80. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23701.

    Article  Google Scholar 

  27. Zhang Y, Ouyang M, Ray A, Liu T, Kong J, Bai B, et al. Computational cytometer based on magnetically modulated coherent imaging and deep learning. Light-Sci Appl. 2019;8(1):91. Available from: https://doi.org/10.1038/s41377-019-0203-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Li Y, Mahjoubfar A, Chen CL, Niazi KR, Pei L, Jalali B. Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Sci Rep. 2019;9(1):11088. Available from: https://doi.org/10.1038/s41598-019-47193-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ignatov A. Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl Soft Comput. 2018;62:915–22. Available from: http://www.sciencedirect.com/science/article/pii/S1568494617305665.

    Article  Google Scholar 

  30. Bresch E, Großekathöfer U, Garcia-Molina G. Recurrent deep neural networks for real-time sleep stage classification from single channel EEG. Front Comput Neurosci. 2018:12–85. Available from: https://www.frontiersin.org/article/10.3389/fncom.2018.00085.

  31. Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng. 2016;63(3):664–75. Available from: https://doi.org/10.1109/TBME.2015.2468589.

    Article  PubMed  Google Scholar 

  32. Lekha S, Suchetha M. Real-time non-invasive detection and classification of diabetes using modified convolution neural network. IEEE J Biomed Health Inform. 2018;22(5):1630–6. Available from: https://doi.org/10.1109/JBHI.2017.2757510.

    Article  PubMed  CAS  Google Scholar 

  33. Wang N, Liu R, Asmare N, Chu C-HH, Sarioglu AF. Processing code-multiplexed Coulter signals via deep convolutional neural networks. Lab Chip. 2019;19(19):3292–304. Available from: https://doi.org/10.1039/C9LC00597H.

    Article  PubMed  CAS  Google Scholar 

  34. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533–6. Available from: https://doi.org/10.1038/323533a0.

    Article  Google Scholar 

  35. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79(8):2554–8. Available from: https://www.pnas.org/content/79/8/2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demierre N, Braschler T, Linderholm P, Seger U, van Lintel H, Renaud P. Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip. 2007;7(3):355–65. Available from: https://doi.org/10.1039/B612866A.

    Article  PubMed  CAS  Google Scholar 

  37. Caselli F, De Ninno A, Reale R, Businaro L, Bisegna P. A novel wiring scheme for standard chips enabling high-accuracy impedance cytometry. Sens Actuator B-Chem. 2018;256:580–9. Available from: https://doi.org/10.1016/j.snb.2017.10.113.

    Article  CAS  Google Scholar 

  38. Caselli F, Reale R, Nodargi NA, Bisegna P. Numerical investigation of a novel wiring scheme enabling simple and accurate impedance cytometry. Micromachines. 2017;8(9):283. Available from: https://doi.org/10.3390/mi8090283.

    Article  PubMed Central  Google Scholar 

  39. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. Available from: https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  PubMed  CAS  Google Scholar 

  40. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005;18(5):602–10. Available from: http://www.sciencedirect.com/science/article/pii/S0893608005001206.

    Article  PubMed  Google Scholar 

  41. Caselli F, Bisegna P. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout. Med Eng Phys. 2017;48:81–9. Available from: https://doi.org/10.1016/j.medengphy.2017.04.005.

    Article  PubMed  Google Scholar 

  42. Shen Y, Yalikun Y, Tanaka Y. Recent advances in microfluidic cell sorting systems. Sens Actuator B-Chem. 2019;282:268–81. Available from: http://www.sciencedirect.com/science/article/pii/S0925400518319798.

    Article  CAS  Google Scholar 

  43. Rashid KM, Louis J. Times-series data augmentation and deep learning for construction equipment activity recognition. Adv Eng Inform. 2019;42:100944. Available from: http://www.sciencedirect.com/science/article/pii/S1474034619300886.

    Article  Google Scholar 

  44. Reale R, De Ninno A, Businaro L, Bisegna P, Caselli F. Electrical measurement of cross-sectional position of particles flowing through a microchannel. Microfluid Nanofluid. 2018;22(4):1–13. Available from: https://doi.org/10.1007/s10404-018-2055-3.

    Article  CAS  Google Scholar 

  45. De Ninno A, Errico V, Bertani FR, Businaro L, Bisegna P, Caselli F. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry. Lab Chip. 2017;17(6):1158–66. Available from: https://doi.org/10.1039/C6LC01516F.

    Article  PubMed  CAS  Google Scholar 

  46. Haandbaek N, Burgel SC, Heer F, Hierlemann A. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab Chip. 2014;14(2):369–77. Available from: https://doi.org/10.1039/C3LC50866H.

    Article  PubMed  CAS  Google Scholar 

  47. De Ninno A, Reale R, Giovinazzo A, Bertani FR, Businaro L, Bisegna P, et al. High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip. Biosens Bioelectron. 2019;150:111887. Available from: https://doi.org/10.1016/j.bios.2019.111887.

    Article  PubMed  CAS  Google Scholar 

  48. Rollo E, Tenaglia E, Genolet R, Bianchi E, Harari A, Coukos G, et al. Label-free identification of activated T-lymphocytes through tridimensional microsensors on chip. Biosens Bioelectron. 2017;94:193–9. Available from: https://doi.org/10.1016/j.bios.2017.02.047.

    Article  PubMed  CAS  Google Scholar 

  49. Shaker M, Colella L, Caselli F, Bisegna P, Renaud P. An impedance-based flow micro-cytometer for single cell morphology discrimination. Lab Chip. 2014;14(14):2548–55. Available from: https://doi.org/10.1039/C4LC00221K.

    Article  PubMed  CAS  Google Scholar 

  50. Zhu Z, Frey O, Franke F, Haandbæk N, Hierlemann A. Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy. Anal Bioanal Chem. 2014;406(27):7015–25. Available from: https://doi.org/10.1007/s00216-014-7955-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yu BY, Elbuken C, Shen C, Huissoon JP, Ren CL. An integrated microfluidic device for the sorting of yeast cells using image processing. Sci Rep. 2018;8(1):3550. Available from: https://doi.org/10.1038/s41598-018-21833-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Honrado C, Ciuffreda L, Spencer D, Ranford-Cartwright L, Morgan H. Dielectric characterization of Plasmodium falciparum-infected red blood cells using microfluidic impedance cytometry. J R Soc Interface. 2018;15(147):20180416. Available from: https://doi.org/10.1098/rsif.2018.0416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study received funding from the Italian Ministry of Education, University and Research (SIR 2014, Grant RBSI14TX20); from the University of Rome Tor Vergata (Mission Sustainability, Grant E81I18000540005); from the U.S. National Center for Advancing Translational Sciences of the National Institutes of Health (Award Number UL1TR003015); and from Advanced Regenerative Medicine Institute’s BioFab-USA (Subcontract T0163).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors and all authors approved the final version.

Corresponding authors

Correspondence to Nathan S. Swami or Frederica Caselli.

Ethics declarations

The reported studies on blood samples have been approved by the University of Virginia Institutional Review Board for Health Sciences Research (IRB-HSR protocol no. 21081) and have been performed in accordance with ethical standards.

Conflict of interest

The authors declare that they have no conflicts of interest.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the Italian Ministry of Education, University and Research, and the other funding agencies.

Additional information

Published in the topical collection Bioanalytics and Higher Order Electrokinetics with guest editors Mark A. Hayes and Federica Caselli.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honrado, C., McGrath, J.S., Reale, R. et al. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Anal Bioanal Chem 412, 3835–3845 (2020). https://doi.org/10.1007/s00216-020-02497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02497-9

Keywords

Navigation