Skip to main content
Log in

PtNPs-GNPs-MWCNTs-β-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor, platinum nanoparticles/graphene nanoplatelets/multi-walled carbon nanotubes/β-cyclodextrin composite (PtNPs-GNPs-MWCNTs-β-CD) modified carbon glass electrode (GCE), was fabricated and used for the sensitive detection of folic acid (FA). The PtNPs-GNPs-MWCNTs-β-CD nanocomposite was easily prepared with an ultrasound-assisted assembly method, and it was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical behavior of FA at PtNPs-GNPs-MWCNTs-β-CD/GCE was investigated in detail. Some key experimental parameters such as pH, amount of PtNPs-GNPs-MWCNTs-β-CD composite, and scan rate were optimized. A good linear relationship (R2 = 0.9942) between peak current of cyclic voltammetry (CV) and FA concentration in the range 0.02–0.50 mmol L−1 was observed at PtNPs-GNPs-MWCNTs-β-CD/GCE. The detection limit was 0.48 μmol L−1 (signal-to-noise ratio = 3). A recovery of 97.55–102.96% was obtained for the determination of FA in FA pills (containing 0.4 mg FA per pill) at PtNPs-GNPs-MWCNTs-β-CD/GCE, indicating that the modified electrode possessed relatively high sensitivity and stability for the determination of FA in real samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Herbert V. Folic acid. Annu Rev Med. 1965;16(1):359–70.

    PubMed  CAS  Google Scholar 

  2. Catala GN, Bestwick CS, Russell WR, Tortora K, Giovannelli L, Moyer MP, et al. Folate, genomic stability and colon cancer: the use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutat Res. 2019;843:73–80.

    PubMed  CAS  Google Scholar 

  3. Navarrete-Muñoz EM, Valera-Gran D, Garcia-de-la-Hera M, Gonzalez-Palacios S, Riaño I, Murcia M, et al. High doses of folic acid in the periconceptional period and risk of low weight for gestational age at birth in a population based cohort study. Eur J Nutr. 2019;58(1):241–51.

    PubMed  Google Scholar 

  4. Wang F, Cao M, Wang N, Muhammad N, Wu S, Zhu Y. Simple coupled ultrahigh performance liquid chromatography and ion chromatography technique for simultaneous determination of folic acid and inorganic anions in folic acid tablets. Food Chem. 2018;239:62–7.

    PubMed  CAS  Google Scholar 

  5. Wang M, Jiao Y, Cheng C, Hua J, Yang Y. Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum. Anal Bioanal Chem. 2017;409(30):7063–75.

    PubMed  CAS  Google Scholar 

  6. Bertuzzi T, Rastelli S, Mulazzi A, Rossi F. LC-MS/MS determination of mono-glutamate folates and folic acid in beer. Food Anal Method. 2019;12(3):722–8.

    Google Scholar 

  7. Cao Y, Griffith B, Bhomkar P, Wishart DS, McDermott MT. Functionalized gold nanoparticle-enhanced competitive assay for sensitive small-molecule metabolite detection using surface plasmon resonance. Analyst. 2018;143(1):289–96.

    CAS  Google Scholar 

  8. Hoyos-Arbeláez J, Vázquez M, Contreras-Calderón J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: a review. Food Chem. 2017;221:1371–81.

    PubMed  Google Scholar 

  9. Kıranşan KD, Topçu E. Free-standing and flexible MoS2/rGO paper electrode for amperometric detection of folic acid. Electroanal. 2018;30(5):810–8.

    Google Scholar 

  10. Venu M, Agarwa VKGS, Venkateswarlu S, Madhavi G. Simultaneous determination of dopamine, uric acid and folic acid with electrochemical techniques based on Co3O4/rGO/CTAB modified carbon paste electrode. Int J Electrochem Sci. 2018;13:11702–19.

    CAS  Google Scholar 

  11. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos Part B-Eng. 2019;172:666–70.

    CAS  Google Scholar 

  12. Wong A, Santos AM, Silva TA, Fatibello-Filho O. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT: PSS. Talanta. 2018;183:329–38.

    PubMed  CAS  Google Scholar 

  13. Gao X, Yue H, Huang S, Lin X, Gao XP, Wang B, et al. Synthesis of graphene/ZnO nanowire arrays/graphene foam and its application for determination of folic acid. J Electroanal Chem. 2018;808:189–94.

    CAS  Google Scholar 

  14. Akbar S, Anwar A, Kanwal Q. Electrochemical determination of folic acid: a short review. Anal Biochem. 2016;510:98–105.

    PubMed  CAS  Google Scholar 

  15. Freeman R, Finder T, Bahshi L, Willner I. β-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett. 2009;9(5):2073–6.

    PubMed  CAS  Google Scholar 

  16. Ares AM, Muino R, Costoya A, Lorenzo RA, Concheiro A, Carro AM, et al. Cyclodextrin-functionalized cellulose filter paper for selective capture of diclofenac. Carbohyd Polym. 2019;220:43–52.

    CAS  Google Scholar 

  17. Wang KR, Guo DS, Jiang BP, Sun ZH, Liu Y. Molecular aggregation behavior of perylene-bridged bis(β-cyclodextrin) and its electronic interactions upon selective binding with aromatic guests. J Phys Chem B. 2010;114(1):101–6.

    PubMed  CAS  Google Scholar 

  18. Michalska K, Gruba E, Bocian W, Cielecka-Piontek J. Enantioselective recognition of radezolid by cyclodextrin modified capillary electrokinetic chromatography and electronic circular dichroism. J Pharm Biomed Anal. 2017;139:98–108.

    PubMed  CAS  Google Scholar 

  19. Zou J, Yu JG. Chiral recognition of tyrosine enantiomers on a novel bis-aminosaccharides composite modified glassy carbon electrode. Anal Chim Acta. 2019;1088:35–44.

    PubMed  CAS  Google Scholar 

  20. Ceborska M, Zimnicka M, Wszelaka-Rylik M, Troć A. Characterization of folic acid/native cyclodextrins host–guest complexes in solution. J Mol Struct. 2016;1109:114–8.

    CAS  Google Scholar 

  21. Nekvinda J, Grüner B, Gabel D, Nau WM, Assaf KI. Host–guest chemistry of carboranes: synthesis of carboxylate derivatives and their binding to cyclodextrins. Chem-Eur J. 2018;24(49):12970–5.

    PubMed  CAS  Google Scholar 

  22. Tan L, Zhou KG, Zhang YH, Wang HX, Wang XD, Guo YF, et al. Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. Electrochem Commun. 2010;12(4):557–60.

    CAS  Google Scholar 

  23. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM. Improved charge transfer at carbon nanotube electrodes. Adv Mater. 1999;11(2):154–7.

    CAS  Google Scholar 

  24. Wu W, Jia M, Zhang Z, Chen X, Zhang Q, Zhang W, et al. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotox Environ Saf. 2019;175:243–50.

    CAS  Google Scholar 

  25. Shetti NP, Malode SJ, Nayak DS, Aminabhavi TM, Reddy KR. Nanostructured silver doped TiO2/CNTs hybrid as an efficient electrochemical sensor for detection of anti-inflammatory drug, cetirizine. Microchem J. 2019;150:104124.

    CAS  Google Scholar 

  26. Razavipanah I, Rounaghi GH, Deiminiat B, Damirchi S, Abnous K, Izadyar M, et al. A new electrochemical aptasensor based on MWCNT-SiO2@Au core-shell nanocomposite for ultrasensitive detection of bisphenol A. Microchem J. 2019;146:1054–63.

    CAS  Google Scholar 

  27. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 2010;81(3):754–9.

    PubMed  CAS  Google Scholar 

  28. Liao C, Zhao XR, Jiang XY, Teng J, Yu JG. Hydrothermal fabrication of novel three-dimensional graphene oxide-pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents. Microchem J. 2020;152:104288.

    Google Scholar 

  29. Zhu Y, Zeng GM, Zhang Y, Tang L, Chen J, Cheng M, et al. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb(2+)-induced G-rich DNA conformation. Analyst. 2014;139(19):5014–20.

    PubMed  CAS  Google Scholar 

  30. Akilarasan M, Kogularasu S, Chen SM, Chen TW, Lin SH. One-step synthesis of reduced graphene oxide sheathed zinc oxide nanoclusters for the trace level detection of bisphenol A in tissue papers. Ecotox Environ Saf. 2018;161:699–705.

    CAS  Google Scholar 

  31. Zou J, Yuan MM, Huang ZN, Chen XQ, Jiang XY, Jiao FP, et al. Highly-sensitive and selective determination of bisphenol A in milk samples based on self-assembled graphene nanoplatelets-multiwalled carbon nanotube-chitosan nanostructure. Mat Sci Eng C-Mater. 2019;103.

  32. Guan JF, Huang ZN, Zou J, Jiang XY, Peng DM, Yu JG. A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection. Ecotox Environ Saf. 2020;190:110123.

    Google Scholar 

  33. Li S, Liao L, Wu R, Yang Y, Xu L, Xiao X, et al. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe. Anal Bioanal Chem. 2015;407(29):8911–8.

    PubMed  CAS  Google Scholar 

  34. Huang ZN, Jiao Z, Teng J, Liu Q, Yuan MM, Jiao FP, et al. A novel electrochemical sensor based on self-assembled platinum nanochains - multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid. Ecotox Environ Saf. 2019;172:167–75.

    CAS  Google Scholar 

  35. Polsky R, Gill R, Kaganovsky L, Willner I. Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem. 2006;78(7):2268–71.

    PubMed  CAS  Google Scholar 

  36. Guo S, Wen D, Zhai Y, Dong S, Wang E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano. 2010;4(7):3959–68.

    PubMed  CAS  Google Scholar 

  37. Zhong X, Feng Y, Lieberwirth I, Knoll W. Facile synthesis of morphology-controlled platinum nanocrystals. Chem Mater. 2006;18:2468–71.

    CAS  Google Scholar 

  38. Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z. Graphene–Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem Commun. 2011;13(10):1131–4.

    CAS  Google Scholar 

  39. Shinde VV, Jeong D, Jung S. Supramolecular aminocatalysis via inclusion complex: amino-doped β-cyclodextrin as an efficient supramolecular catalyst for the synthesis of chromeno pyrimido[1,2-b]indazol in water. J Ind Eng Chem. 2018;68:6–13.

    CAS  Google Scholar 

  40. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater. 2009;21(13):2950–6.

    CAS  Google Scholar 

  41. Chen Z, Wei P, Zhang S, Lu B, Zhang L, Yang X, et al. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing. Mater Sci Eng A. 2020;769:138484.

    CAS  Google Scholar 

  42. Watanabe T, Einaga Y. Design and fabrication of nickel microdisk-arrayed diamond electrodes for a non-enzymatic glucose sensor based on control of diffusion profiles. Biosens Bioelectron. 2009;24(8):2684–9.

    PubMed  CAS  Google Scholar 

  43. Eddowes MJ, Hill HAO. Electrochemistry of horse heart cytochrome c. J Am Chem Soc. 1979;101:4461–4.

    CAS  Google Scholar 

  44. Mukherjee R, Krishnan R, Lu TM, Koratkar N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy. 2012;1(4):518–33.

    CAS  Google Scholar 

  45. Ghrera AS. Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Anal Chim Acta. 2019;1056:26–33.

    PubMed  CAS  Google Scholar 

  46. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem. 1979;101:19–28.

    CAS  Google Scholar 

  47. Luong JHT, Glennon JD, Gedanken A, Vashist SK. Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchim Acta. 2016;184(2):369–88.

    Google Scholar 

  48. Sun W, Gong S, Shi F, Cao L, Ling L, Zheng W, et al. Direct electrochemistry and electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film. Mater Sci Eng C Mater Biol Appl. 2014;40:235–41.

    PubMed  CAS  Google Scholar 

  49. Thakur B, Bernalte E, Smith J, Linton P, Sawant S, Banks C, et al. The mediatorless electroanalytical sensing of sulfide utilizing unmodified graphitic electrode materials. C J Carbon Res. 2016;2(2):14.

    Google Scholar 

  50. Nicholson RS. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem. 1965;37:1351–5.

    CAS  Google Scholar 

  51. Kun Z, Ling Z, Yi H, Ying C, Dongmei T, Shuliang Z, et al. Electrochemical behavior of folic acid in neutral solution on the modified glassy carbon electrode: platinum nanoparticles doped multi-walled carbon nanotubes with Nafion as adhesive. J Electroanal Chem. 2012;677-680:105–12.

    Google Scholar 

  52. Xiao F, Ruan C, Liu L, Yan R, Zhao F, Zeng B. Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid. Sensor Actuator B Chem. 2008;134(2):895–901.

    CAS  Google Scholar 

  53. Abdelwahab AA, Shim YB. Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensor Actuator B Chem. 2015;221:659–65.

    CAS  Google Scholar 

  54. Dai H, Li Y, Zhang S, Gong L, Li X, Lin Y. Delicate photoelectrochemical sensor for folic acid based on carbon nanohorns supported interwoven titanate nanotubes. Sensor Actuator B Chem. 2016;222:120–6.

    CAS  Google Scholar 

  55. Moorthy PN, Hayon E. One-electron redox reactions of water-soluble vitamins. II. Pterin and folic acid. J Org Chem. 1976;41(7):1607–13.

    PubMed  CAS  Google Scholar 

  56. Akhtar MJ, Khan MA, Ahmad I. Photodegradation of folic acid in aqueous solution. J Pharmaceut Biomed. 1999;25:269–75.

    Google Scholar 

  57. Saus W, Knittel D, Schollmeyer E. Voltammetric determination of reducing agents and dyestuffs in textile printing pastes. Fresenius J Anal Chem. 1990;338(8):912–6.

    CAS  Google Scholar 

  58. He L, Wang Q, Mandler D, Li M, Boukherroub R, Szunerits S. Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosens Bioelectron. 2016;75:389–95.

    PubMed  CAS  Google Scholar 

  59. Beitollahi H, Ardakani MM, Ganjipour B, Naeimi H. Novel 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. Biosens Bioelectron. 2008;24(3):362–8.

    PubMed  CAS  Google Scholar 

  60. Je H, Shangguan E, Li Q. A pre-anodized inlaying ultrathin carbon paste electrode for simultaneous determination of uric acid and folic acid. Electrochim Acta. 2013;89:600–6.

    Google Scholar 

  61. Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sensor Actuator B Chem. 2010;151(1):243–9.

    CAS  Google Scholar 

  62. Zhang D, Ouyang X, Ma W, Li L, Zhang Y. Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanal. 2016;28(2):312–9.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from National Natural Science Foundation of China (Grant No. 51674292) and Provincial Natural Science Foundation of Hunan (Grant No. 2016JJ1023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Ming Peng or Jin-Gang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, MM., Zou, J., Huang, ZN. et al. PtNPs-GNPs-MWCNTs-β-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid. Anal Bioanal Chem 412, 2551–2564 (2020). https://doi.org/10.1007/s00216-020-02488-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02488-w

Keywords

Navigation