Skip to main content
Log in

High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines

Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript


Phenotypic quantification of cells based on their plasma membrane capacitance and cytoplasmic conductivity, as determined by their dielectrophoretic frequency dispersion, is often used as a marker for their biological function. However, due to the prevalence of phenotypic heterogeneity in many biological systems of interest, there is a need for methods capable of determining the dielectrophoretic dispersion of single cells at high throughput and without the need for sample dilution. We present a microfluidic device methodology wherein localized constrictions in the microchannel are used to enhance the field delivered by adjoining planar electrodes, so that the dielectrophoresis level and direction on flow-focused cells can be determined on each traversing cell in a high-throughput manner based on their deflected flow streamlines. Using a sample of human red blood cells diluted to 2.25 × 108 cells/mL, the dielectrophoretic translation of single cells traversing at a flow rate of 1.68 μL/min is measured at a throughput of 1.1 × 105 cells/min, to distinguish positive versus negative dielectrophoresis and determine their crossover frequency in media of differing conductivity for validation of the computed membrane capacitance to that from prior methods. We envision application of this dynamic dielectrophoresis (Dy-DEP) method towards high-throughput measurement of the dielectric dispersion of single cells to stratify phenotypic heterogeneity of a particular sample based on their DEP crossover frequency, without the need for significant sample dilution.

Grapical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Perkins TJ, Swain PS. Strategies for cellular decision-making. Mol Syst Biol. 2009;5(1):326.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klepárník, K, F. Foret. Recent advances in the development of single cell analysis—a review. Anal Chim Acta 2013;800:12–21.

  3. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–76.

    Article  PubMed  CAS  Google Scholar 

  4. Grover P, Cummins A, Price T, Roberts-Thomson I, Hardingham J. Circulating tumour cells: the evolving concept and the inadequacy of their enrichment by EpCAM-based methodology for basic and clinical cancer research. Ann Oncol. 2014;25(8):1506–16.

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markers. Stem Cells. 2006;24(2):376–85.

    Article  PubMed  Google Scholar 

  6. Wlodkowic D, Skommer J, Darzynkiewicz Z. Cytometry in cell necrobiology revisited. Recent advances and new vistas. Cytom A. 2010;77(7):591–606.

    Article  CAS  Google Scholar 

  7. Lee WC, Shi H, Poon Z, Nyan LM, Kaushik T, Shivashankar G, et al. Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. PNAS. 2014;111(42):E4409–18.

    Article  PubMed  CAS  Google Scholar 

  8. Gascoyne PR, Shim S, Noshari J, Becker FF, Stemke-Hale K. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis. 2013;34(7):1042–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Moore JH, Varhue WB, Su Y-H, Linton SS, Farmehini V, Fox TE, et al. Conductance-based biophysical distinction and microfluidic enrichment of nanovesicles derived from pancreatic tumor cells of varying invasiveness. Anal Chem. 2019;91(16):10424–31.

    Article  PubMed  CAS  Google Scholar 

  10. Elitas M, Martinez-Duarte R, Dhar N, McKinney JD, Renaud P. Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations. Lab Chip. 2014;14(11):1850–7.

    Article  PubMed  CAS  Google Scholar 

  11. Su Y-H, Rohani A, Warren CA, Swami NS. Tracking inhibitory alterations during interstrain Clostridium difficile interactions by monitoring cell envelope capacitance. ACS Infect Dis. 2016;2(8):544–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Honrado C, Ciuffreda L, Spencer D, Ranford-Cartwright L, Morgan H. Dielectric characterization of Plasmodium falciparum-infected red blood cells using microfluidic impedance cytometry. J R Soc Interface. 2018;15(147):20180416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gascoyne, P, S. Shim. Isolation of circulating tumor cells by dielectrophoresis. Cancers. 2014;6(1):545–579.

  14. Yale AR, Nourse JL, Lee KR, Ahmed SN, Arulmoli J, Jiang AY, et al. Cell surface N-glycans influence electrophysiological properties and fate potential of neural stem cells. Stem Cell Rep. 2018;11(4):869–82.

    Article  CAS  Google Scholar 

  15. Pohl, H. A, J.S. Crane. Dielectrophoresis of cells. Biophys J 1971;11(9):711–727.

  16. Jones TB. Electromechanics of particles. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  17. Morgan, H, N.G. Green. AC electrokinetics. Philadelphia: Research Studies Press; 2003.

  18. Fernandez RE, Rohani A, Farmehini V, Swami NS. Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta. 2017;966:11–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gagnon ZR. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis. 2011;32(18):2466–87.

    Article  PubMed  CAS  Google Scholar 

  20. Wang X-B, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR. Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem. 2000;72(4):832–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Vahey MD, Voldman J. High-throughput cell and particle characterization using isodielectric separation. Anal Chem. 2009;81(7):2446–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis. 2009;30(5):782–91.

    Article  PubMed  CAS  Google Scholar 

  23. Lewpiriyawong N, Yang C, Lam YC. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis. 2010;31(15):2622–31.

    Article  PubMed  CAS  Google Scholar 

  24. Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R. Microfluidic characterization and continuous separation of cells and particles using conducting poly (dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal Chem. 2011;83(24):9579–85.

    Article  PubMed  CAS  Google Scholar 

  25. Lapizco-Encinas, B. H, B.A. Simmons, E.B. Cummings, Y. Fintschenko. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis. 2004;25(10–11):1695–1704.

  26. Bhattacharya S, Chao T-C, Ariyasinghe N, Ruiz Y, Lake D, Ros R, et al. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal Bioanal Chem. 2014;406(7):1855–65.

    Article  PubMed  CAS  Google Scholar 

  27. Su Y-H, Tsegaye M, Varhue W, Liao K-T, Abebe LS, Smith JA, et al. Quantitative dielectrophoretic tracking for characterization and separation of persistent subpopulations of Cryptosporidium parvum. Analyst. 2014;139(1):66–73.

    Article  PubMed  CAS  Google Scholar 

  28. Farmehini V, Rohani A, Su Y-H, Swami NS. A wide-bandwidth power amplifier for frequency-selective insulator-based dielectrophoresis. Lab Chip. 2014;14(21):4183–7.

    Article  PubMed  CAS  Google Scholar 

  29. Huang C-T, Weng C-H, Jen C-P. Three-dimensional cellular focusing utilizing a combination of insulator-based and metallic dielectrophoresis. Biomicrofluidics. 2011;5(4):044101.

    Article  PubMed Central  CAS  Google Scholar 

  30. Pommer MS, Zhang Y, Keerthi N, Chen D, Thomson JA, Meinhart CD, et al. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis. 2008;29(6):1213–8.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao, K., Larasati, B.P. Duncker, D. Li. Continuous cell characterization and separation by microfluidic alternating current dielectrophoresis. Anal Chem 2019;91(9):6304–6314.

  32. Piacentini N, Mernier G, Tornay R, Renaud P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics. 2011;5(3):034122–034122-8.

    Article  PubMed Central  CAS  Google Scholar 

  33. Sun M, Agarwal P, Zhao S, Zhao Y, Lu X, He X. Continuous on-chip cell separation based on conductivity-induced dielectrophoresis with 3D self-assembled ionic liquid electrodes. Anal Chem. 2016;88(16):8264–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhang J, Yuan D, Zhao Q, Yan S, Tang S-Y, Tan SH, et al. Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sensors Actuators B Chem. 2018;267:14–25.

    Article  CAS  Google Scholar 

  35. Rohani A, Moore JH, Kashatus JA, Sesaki H, Kashatus DF, Swami NS. Label-free quantification of intracellular mitochondrial dynamics using dielectrophoresis. Anal Chem. 2017;89(11):5757–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Su Y-H, Warren CA, Guerrant RL, Swami NS. Dielectrophoretic monitoring and interstrain separation of intact Clostridium difficile based on their S(surface)-layers. Anal Chem. 2014;86(21):10855–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cottet J, Fabregue O, Berger C, Buret F, Renaud P, Frénéa-Robin M. MyDEP: a new computational tool for dielectric modeling of particles and cells. Biophys J. 2019;116(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip. 2007;7(9):1114–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references


We thank Dr. Jennifer Guler (PI of the Malaria Lab, University of Virginia) and graduate student Audrey Brown for providing the RBC samples used in this work.


Funding from NIH grants 1R21AI130902-01 and R01 CA200755, Advanced Regenerative Medicine Institute’s BioFab, USA, Subcontract T0163, and University of Virginia’s 3C program are acknowledged.

Author information

Authors and Affiliations



The manuscript was written through contributions of all authors and all authors approved the final version.

Corresponding author

Correspondence to Nathan S. Swami.

Ethics declarations

The reported studies on blood samples have been approved by the University of Virginia Institutional Review Board for Health Sciences Research (IRB-HSR protocol #21081) and have been performed in accordance with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Bioanalytics and Higher Order Electrokinetics with guest editors Mark A. Hayes and Federica Caselli.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 659 kb)

(MP4 2681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Castro, K., Honrado, C., Varhue, W.B. et al. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. Anal Bioanal Chem 412, 3847–3857 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: