Skip to main content
Log in

The antioxidant screening of potential materials for drugs based on 6-nitro-1,2,4-triazoloazines containing natural polyphenol fragments

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The course of viral diseases is accompanied by excessive generation of active oxygen metabolites, so the effectiveness of treatment can be improved by combining antiviral and antioxidant therapy. There was a screening of antioxidant properties of 6-nitro-1,2,4-triazoloazine-modified fragments of natural polyphenols (catechol, pyrogallol, phloroglucinol, resorcinol) which are potential dual-action combination preparations. Screening was carried out using various approaches: the study of redox transformations by cyclic voltammetry, determination of antioxidant capacity with oxidizing agents of a radical and non-radical nature by the potentiometric method using potassium hexacyanoferrate (III) and optical methods (the Folin assay and the DPPH assay). It has been established that molecules obtained by conjugation of polyphenols with heterocycles exhibit antioxidant properties. The exception is adducts of triazolodiazines with resorcinol. A decrease in the antioxidant ability of synthesized adducts relative to initial polyphenols has been noted. The antioxidant capacity has been studied at a number of temperatures (25 °C, 37 °C), and the reaction half-life has been determined. The correlation of antioxidant capacity by a potentiometric assay with the Folin assay was R = 0.71; by a potentiometric assay with the DPPH assay was R = 0.67. Leader compounds have been identified.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bauer ME, Fuente ML. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev. 2016;158:27–37.

    Article  CAS  Google Scholar 

  2. Mathys L, Balzarini J. The role of cellular oxidoreductases in viral entry and virus infection-associated oxidative stress: potential therapeutic applications. Expert Opin Ther Targets. 2016;20:123–43.

    Article  CAS  Google Scholar 

  3. Olinski R, Styczynski J, Olinska E, Gackowski D. Viral infection-oxidative stress/DNA damage-aberrant DNA methylation: separate or interrelated events responsible for genetic instability and childhood ALL development? Biochim Biophys Acta. 1846;2014:226–31.

    Google Scholar 

  4. To EE, Broughton BR, Hendricks KS, Vlahos R, Selemidis S. Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic Res. 2011;48:940–7.

    Article  Google Scholar 

  5. Wang QW, Su Y, Sheng JT, Gu LM, Zhao Y, Chen XX, et al. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways. PLoS One. 2018;13:e0191793.

    Article  Google Scholar 

  6. Lee YH, Lai CL, Hsieh SH, Shieh CC, Huang LM, Wu-Hsieh BA. Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res. 2013;178:411–22.

    Article  CAS  Google Scholar 

  7. Liu M, Chen F, Liu T, Chen F, Liu S, Yang J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017;19:580–6.

    Article  Google Scholar 

  8. Pavlova EL, Simeonova LS, Gegova GA. Combined efficacy of oseltamivir, isoprinosine and ellagic acid in influenza A (H3N2)-infected mice. Biomed Pharmacother. 2018;98:29–35.

    Article  CAS  Google Scholar 

  9. Loginova S, Borisevich SV, Maksimov VA, Bondarev VP, Kotovskaya SK, Rusinov VL, et al. Therapeutic efficacy of triazavirin, a novel Russian chemotherapeutic, against influenza virus A (H5N1). Antibiot Khimioter. 2011;56:10–2.

    PubMed  Google Scholar 

  10. Loginova S, Borisevich SV, Maksimov VA, Bondarev VP, Kotovskaya SK, Rusinov VL, et al. Triazavirin prophylactic efficacy against influenza virus A (H5N1). Antibiot Khimioter. 2010;55:25–8.

    CAS  PubMed  Google Scholar 

  11. Loginova S, Borisevich SV, Rusinov VL, Ulomsky UN, Charushin VN, Chupakhin ON, et al. Investigation of prophylactic efficacy of triazavirin against experimental forest-spring encephalitis on albino mice. Antibiot Khimioter. 2015;60:8–11.

    CAS  PubMed  Google Scholar 

  12. Loginova S, Borisevich SV, Rusinov VL, Ulomsky UN, Charushin VN, Chupakhin ON. Investigation of triazavirin antiviral activity against tick-borne encephalitis pathogen in cell culture. Antibiot Khimioter. 2014;59:3–5.

    CAS  PubMed  Google Scholar 

  13. Rusinov VL, Charushin VN, Chupakhin ON. Russ Chem Bull. 2018;67:573–99.

    Article  CAS  Google Scholar 

  14. Rusinov VL, Chupakhin ON, Deev SL, Shestakova TS, Ulomskii EN, Rusinova LI, et al. Russ Chem Bull. 2010;59:136–43.

    Article  CAS  Google Scholar 

  15. Rusinov VL, Pilicheva TL, Tumashov AA, Kryakunov MV, Chupakhin ON. Addition of polyhydric phenols to 6-nitroazolo [1,5-a] pyrimidines. Chem Heterocycl Compd. 1989;6:811–6.

    Google Scholar 

  16. Voinkov EK, Ulomskiy EN, Rusinov VL, Drokin RA, Fedotov VV, Gorbunov EB. 1-Morpholino-2-nitroethylene as a precursor of nitroacetaldehyde in the synthesis of azolo[5,1-c][1,2,4]triazines. Mendeleev Commun. 2017;27:285–6.

    Article  CAS  Google Scholar 

  17. Rusinov VL, Pilicheva TL, Myasnikov AV, Chupakhin ON. Direct administration of azoloazine residues to resorcinol. Chem Heterocycl Compd. 1986;8:1137–8.

    Google Scholar 

  18. M.B. Borisova, E.L. Gerasimova, R.A. Drokin, E.K. Voinkov, E. B. Gorbunov, A.V. Ivanova, E.N. Ulomsky, J.L. Esaulkova, V.L. Rusinov, Antioxidant and antiviral properties of new compounds of the azoloazine series modified with polyphenol fragments. In: Kudryavtseva KV, Panina EM, editors. Abstracts of the Fourth Interdisciplinary Symposium on Medical, Organic and Biological Chemistry and Pharmaceutics, Moscow: Pero, 2018. pp. 134–135.

  19. Ivanova AV, Gerasimova EL, Brainina KZ. Potentiometric study of antioxidant activity: development and prospects. Crit Rev Anal Chem. 2015;45:311–22.

    Article  CAS  Google Scholar 

  20. Shpigun LK, Arharova MA, Brainina KZ, Ivanova AV. Flow injection potentiometric determination of total antioxidant activity of plant extracts. Anal Chim Acta. 2006;573–574:419–26.

    Article  Google Scholar 

  21. Kh.Z. Brainina, L.V. Alyoshina, E.L. Gerasimova, Ya. E. Kazakov, Ya.B. Beykin, S.V. Belyaeva, T.I. Usatova, O.V. Inzhevatova, A.V. Ivanova, M.Ya. Khodos, New electrochemical methods of determining anti-oxidant activity of blood and blood fractions, Electroanal. 2009;21:618–24.

  22. Ivanova AV, Gerasimova EL, Gazizullina ER, Popova KG, Matern AI. Study of the antioxidant activity and total polyphenol concentration of medicinal plants. J Anal Chem. 2017;72:415–20.

    Article  CAS  Google Scholar 

  23. ISO 14502-1:2005 «Determination of substances characteristic of green and black tea - part: content of total polyphenols in tea - colorimetric method using Folin-Ciocalteu reagent».

  24. Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal. 2011;24:1043–8.

    Article  CAS  Google Scholar 

  25. Polásek M, Skála P, Opletal L, Jahodár L. Rapid automated assay of anti-oxidation/radical-scavenging activity of natural substances by sequential injection technique (SIA) using spectrophotometric detection. Anal Bioanal Chem. 2004;379:754–8.

    Article  Google Scholar 

  26. Amarowicz R, Pegg RB. The potential protective effects of phenolic compounds against low-density lipoprotein oxidation. Curr Pharm Des. 2017;23:2754–66.

    Article  CAS  Google Scholar 

  27. Menshchikova B, Lankin VZ, Kandalintseva NV. Phenolic antioxidants in biology and medicine. Lap Lambert: Saarbrücken; 2012.

    Google Scholar 

  28. Liu L, Ma Z, Zhu X, Zeng R, Tie S, Nan J. Electrochemical behavior and simultaneous determination of catechol, resorcinol, and hydroquinone using thermally reduced carbonnano-fragment modified glassy carbon electrode. Anal Methods. 2016;8:605–13.

    Article  CAS  Google Scholar 

  29. Peng J, Gao ZN. Influence of micelles on the electrochemical behaviors of catechol and hydroquinone and their simultaneous determination. Anal Bioanal Chem. 2006;384:1525–32.

    Article  CAS  Google Scholar 

  30. Kornilov MJ, Turov AB, Myasnikov AB, Torgashev PA, Rusinov VL, Chupakhin ON. Nitroazines 13. Aromaticity of nitroazoazines with a bridging nitrogen atom. J Organomet Chem. 1991;27:144–8.

    CAS  Google Scholar 

  31. Ahmed S, Ahmad M, Butt SB. Electrooxidation of chloro, nitro, and amino substituted phenols in aqueous medium and their heterogeneous kinetics. Res Chem Intermed. 2012;38:705–22.

    Article  CAS  Google Scholar 

  32. Beiginejad H, Nematollahi D, Bayat M, Varmaghani F, Nazaripour A. Experimental and theoretical analysis of the electrochemical oxidation of catechol and hydroquinone derivatives in the presence of various nucleophiles. J Electrochem Soc. 2013;160:H693–8.

    Article  CAS  Google Scholar 

  33. Amorati R, Menichetti S, Viglianisi C, Foti MC. Proton-electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols. Chem Commun (Camb). 2012;48:11904–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was supported by the Russian Foundation for Basic Research (Project No. 19-29-08015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Ivanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Euroanalysis XX with guest editor Sibel A. Ozkan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A., Gerasimova, E., Gazizullina, E. et al. The antioxidant screening of potential materials for drugs based on 6-nitro-1,2,4-triazoloazines containing natural polyphenol fragments. Anal Bioanal Chem 412, 5147–5155 (2020). https://doi.org/10.1007/s00216-020-02466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02466-2

Keywords

Navigation