Skip to main content
Log in

Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The qualitative and quantitative profiling of fatty acids in human blood is a useful tool in disease prevention and health care, two concepts that are intimately related. In fact, fatty acid (FA) analysis can provide in-depth information on a specific metabolic state of individuals. The goal of the present research consisted of the development of a rapid and miniaturized analytical strategy for the complete characterization of the fatty acid profile in human blood. Sample collection was carried out by using the dried blood spot approach, while fatty acid derivatization to methyl esters was performed directly by using sodium methoxide and boron trifluoride. The following figures of merit were defined: intra- and inter-day repeatability, linearity range, limits of detection, and quantification. Additionally, the accuracy of the developed method was evaluated in the analysis of a certified reference human plasma sample. Apart from blood, the analytical procedure was also applied to samples of human serum and plasma. During the final stage of the research, the developed analytical method was performed in a fully automated manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodrıguez L. From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. Trends Analyt Chem. 2009;28:393–403.

    Article  CAS  Google Scholar 

  2. Firl N, Kienberger H, Hauser T, Rychlik M. Determination of the fatty acid profile of neutral lipids, free fatty acids and phospholipids in human plasma. Clin Chem Lab Med. 2013;51:799–810.

    Article  CAS  Google Scholar 

  3. Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis. 2008;197:821–8.

    Article  CAS  Google Scholar 

  4. Harris WS, Luo J, Pottala JV, Margolis KL, Espeland MA, Robinson JG. Red blood cell fatty acids and incident diabetes mellitus in the women’s health initiative memory study. PLoS One. 2016;11:1–17.

    Google Scholar 

  5. Wong TC, Chen YT, Wu PY, Chen TW, Chen HH, Chen TH, et al. Ratio of dietary ω–3 and ω–6 fatty acids-independent determinants of muscle mass-in hemodialysis patients with diabetes. Nutrition. 2016;32:989–94.

    Article  CAS  Google Scholar 

  6. Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman S, Rober-McComb J, et al. Omega–3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem. 2018;58:1–16.

    Article  CAS  Google Scholar 

  7. Risé P, Volpi S, Colombo C, Padoan RF, D'Orazio C, Ghezzi S, et al. Whole blood fatty acid analysis with micromethod in cystic fibrosis and pulmonary disease. J Cyst Fibros. 2010;9:228–33.

    Article  Google Scholar 

  8. Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Baghestani AR, Hekmatdoost A. Dietary fatty acid intakes and asthenozoospermia: a case–control study. Fertil Steril. 2015;103:190–8.

    Article  CAS  Google Scholar 

  9. McEwen BJ. Can omega–3 polyunsaturated fatty acids improve metabolic profile in polycystic ovary syndrome (PCOS)? Adv Integr Med. 2017;4:82–3.

    Article  Google Scholar 

  10. Rahmani E, Samimi M, Ebrahimi FA, Foroozanfard F, Ahmadi S, Rahimi M, et al. The effects of omega–3 fatty acids and vitamin E co–supplementation on gene expression of lipoprotein(a) and oxidized low–density lipoprotein, lipid profiles and biomarkers of oxidative stress in patients with polycystic ovary syndrome. Mol Cell Endocrinol. 2017;439:247–55.

    Article  CAS  Google Scholar 

  11. Kulzow N, Witte AV, Kerti L, Grittner U, Schuchardt JP, Hahn A, et al. Impact of omega–3 fatty acid supplementation on memory functions in healthy older adults. J Alzheimers Dis. 2016;51:713–25.

    Article  Google Scholar 

  12. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  Google Scholar 

  13. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  14. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl–tert–butyl ether for high–throughput lipidomics. J Lipid Res. 2008;49:1137–46.

    Article  CAS  Google Scholar 

  15. Löfgren L, Ståhlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson IG. The BUME method: a novel automated chloroform–free 96–well total lipid extraction method for blood plasma. J Lipid Res. 2012;53:1690–700.

    Article  Google Scholar 

  16. Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res. 1964;5:600–8.

    CAS  PubMed  Google Scholar 

  17. Metcalfe LD, Schmitz AA. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem. 1966;38:514–5.

    Article  CAS  Google Scholar 

  18. Christie WW, Han X. Lipid analysis. Isolation, separation, identification and lipidomic analysis. 4th ed. England: Oily Press; 2010.

    Google Scholar 

  19. Lepage G, Roy CC. Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res. 1986;27:114–20.

    CAS  PubMed  Google Scholar 

  20. Galli C, Risé P, Ghezzi S, Marangoni F. Fast determination of fatty acids in whole blood collected from fingertips: application to the assessment of fatty acid patterns (and various indexes) in population studies. World Rev Nutr Diet. 2009;100:35–45.

    Article  CAS  Google Scholar 

  21. Muller KD, Husmann H, Nalik HP, Schomburg G. Trans-esterification of fatty acids from microorganisms and human blood serum by trimethylsulfonium hydroxide (TMSH) for GC analysis. Chromatographia. 1990;30:245–8.

    Article  Google Scholar 

  22. El-Hamdy AH, Christie WW. Preparation of methyl esters of fatty acids with trimethylsulphonium hydroxide–an appraisal. J Chromatogr. 1993;630:438–41.

    Article  Google Scholar 

  23. Rizzo AM, Montorfano G, Negroni M, Adorni L, Berselli P, Corsetto P, et al. A rapid method for determining arachidonic: eicosapentaenoic acid ratios in whole blood lipids: correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies. Lipids Health Dis. 2010;9:1–8.

    Article  Google Scholar 

  24. Tranchida PQ, Costa R, Donato P, Sciarrone D, Ragonese C, Dugo P, et al. Acquisition of deeper knowledge on the human plasma fatty acid profile exploiting comprehensive 2-D GC. J Sep Sci. 2008;31:3347–51.

    Article  CAS  Google Scholar 

  25. Bondia-Pons I, Castellote IA, López-Sabater MC. Comparison of conventional and fast gas chromatography in human plasma fatty acid determination. J Chromatogr B. 2004;809:339–44.

    Article  CAS  Google Scholar 

  26. de Koning S, van de Meer B, Alkema G, Janssen HG, Brinkmann UAT. Automated determination of fatty acid methyl ester and cis/trans methyl ester composition of fats and oils. J Chrom A. 2001;922:391–7.

    Article  Google Scholar 

  27. Marangoni F, Colombo C, Galli C. A method for the direct evaluation of the fatty acid status in a drop of blood from a fingertip in humans: applicability to nutritional and epidemiological studies. Anal Biochem. 2004;326:267–72.

    Article  CAS  Google Scholar 

  28. Bang I. Ein verfahren zur mikrobestimmung von blutbestandteilen. Biochem Ztschr. 1913;49:19–39.

    CAS  Google Scholar 

  29. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  PubMed  Google Scholar 

  30. Zakaria R, Allen KJ, Koplin JJ, Roche P, Greaves RF. Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process. EJIFCC. 2016;27:288–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Certificate of Analysis, Standard Reference Material 1950 Metabolites in Human Plasma; available at: https://www-s.nist.gov/srmors/view_cert.cfm?srm=1950 (accessed March 8, 2019).

  32. Magnusson B, Örnemark U (eds.). Eurachem Guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. 2nd ed. 2014. ISBN 978-91-87461-59-0. Available from www.eurachem.org.

  33. Kováčik J, Antos V, Micalizzi G, Dresler S, Hrabák P, Mondello L. Accumulation and toxicity of organochlorines in green microalgae. J Hazard Mater. 2018;347:168–75.

    Article  Google Scholar 

  34. Kováčik J, Micalizzi G, Dresler S, Babula P, Hladký J, Chemodanov A, et al. Metabolic responses of Ulva compressa to single and combined heavy metals. Chemosphere. 2018;213:384–94.

    Article  Google Scholar 

  35. Kováčik J, Dresler S, Micalizzi G, Babula P, Hladký J, Mondello L. Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide. 2019;89:11–8.

    Article  Google Scholar 

  36. Fanali C, Micalizzi G, Dugo P, Mondello L. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography. Analyst. 2017;142:4601–12.

    Article  CAS  Google Scholar 

  37. Benner BA Jr, Schantz MM, Powers CD, Schleicher RL, Camara JE, Sharpless KE, et al. Standard reference material (SRM) 2378 fatty acids in frozen human serum. Certification of a clinical SRM based on endogenous supplementation of polyunsaturated fatty acids. Anal Bioanal Chem. 2018;410:2321–9.

    Article  CAS  Google Scholar 

  38. Schantz MM, Powers CD, Schleicher RL, Betz JM, Wise SA. Interlaboratory analytical comparison of fatty acid concentrations in serum or plasma. Clin Chim Acta. 2016;462:148–52.

    Article  CAS  Google Scholar 

  39. Gallego SF, Hermansson M, Liebisch G, Hodson L, Ejsing CS. Total fatty acid analysis of human blood samples in one minute by high-resolution mass spectrometry. Biomolecules. 2019;9:1–16.

    Google Scholar 

  40. Liu G, Mühlhäusler BS, Gibson RA. Evaluation of contamination associated with current blood spot technology for determining the fatty acid status of individuals. Eur J Lipid Sci Technol. 2015;117:1280–6.

    Article  CAS  Google Scholar 

  41. Risè P, Eligini S, Ghezzi S, Colli S, Galli C. Fatty acid composition of plasma, blood cells and whole blood: relevance for the assessment of the fatty acid status in humans. PLEFA. 2007;76:363–96.

    Google Scholar 

  42. Ferreri C, Chatgilialoglu C. Membrane Lipidomics for personalized health. 1st ed. John Wiley & Sons, Ltd: United Kingdom; 2015.

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Shimadzu Corporation and Merck Life Science for their continuous support. The authors thank the “Programma Operativo Fondo Sociale Europeo (FSE) Regione Siciliana 2014–2020–Asse 3 Ob. 10.5” for the PhD fellowship to Giuseppe Micalizzi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Mondello.

Ethics declarations

Confict of interest

The authors declare that they have no conflict of interest.

Statement of human rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki declaration of 1975 (in its most recently amended version).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Published in the topical collection Current Progress in Lipidomics with guest editors Michal Holčapek, Gerhard Liebisch, and Kim Ekroos.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micalizzi, G., Ragosta, E., Farnetti, S. et al. Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids. Anal Bioanal Chem 412, 2327–2337 (2020). https://doi.org/10.1007/s00216-020-02424-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02424-y

Keywords

Navigation