Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish

Abstract

A novel room temperature phosphorescence chemosensor probe has been successfully developed and applied to the selective detection and quantification of inorganic arsenic (As(III) plus As(V)) in fish samples. The prepared material (IIP@ZnS:Mn QDs) was based on Mn-doped ZnS quantum dots coated with (3-aminopropyl) triethoxysilane and an As(III) ionic imprinted polymer. The novel use of vinyl imidazole as a complexing reagent when synthesizing the ionic imprinted polymer guarantees that both inorganic arsenic species (As(III) and As(V)) can interact with the recognition cavities in the ionic imprinted polymer. After characterization, several studies were performed to enhance the interaction between the targets (As(III) and As(V) ions) and the IIP@ZnS:Mn QDs nanoparticles. The optimization and validation process showed that the composite material offers high selectivity (high imprinting factor) for inorganic arsenic species. The limit of quantification for total inorganic As was 29.6 μg kg−1, value lower than the EU/EC regulation limits proposed for other foodstuffs than fish, such as rice. The proposed method is therefore simple, requires short analysis times and offers good sensitivity, precision (inter-day relative standard deviations lower than 10%), and quantitative analytical recoveries. The method has been successfully applied to assess total inorganic arsenic in several fishery products, showing good agreement with the total inorganic arsenic concentration (As(III) plus As(V)) found after applying other advanced and expensive methods such those based on high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Liu CW, Liang CP, Huang FM, Hsueh YM. Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Sci Total Environ. 2006;361:57–66.

    CAS  Article  Google Scholar 

  2. 2.

    ATSDR (2017) ATSDR’s Substance Priority List. Agency for toxic substances and disease registry. https://www.atsdr.cdc.gov/SPL/. Accessed 20 December 2018.

  3. 3.

    IARC (2018) IARC monographs on the evaluation of carcinogenic risk to human. https://monographs.iarc.fr/list-of-classifications-volumes/. Accessed 29 December 2018.

  4. 4.

    Tidwell JH, Allan GH. Fish as a food: aquaculture’s contribution. EMBO Rep. 2001;2(11):958–63.

    CAS  Article  Google Scholar 

  5. 5.

    Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, et al. Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol. 2008;42:1051–7.

    CAS  Article  Google Scholar 

  6. 6.

    Gao Y, Baisch P, Mirlean N, Rodrigues da Silva JFM, Van Larebeke N, Baeyens W, et al. Arsenic speciation in fish and shellfish from the North Sea (Southern bight) and Açu Port area (Brazil) and health risks related to seafood consumption. Chemosphere. 2018;191:89–96.

    CAS  Article  Google Scholar 

  7. 7.

    Wei X, Zhou Z, Dai J, Hao T, Li H, Xu Y, et al. Composites of surface imprinting polymer capped Mn-doped ZnS quantum dots for room-temperature phosphorescence probing of 2,4,5-trichlorophenol. J Lumin. 2014;155:298–304.

    CAS  Article  Google Scholar 

  8. 8.

    Wang YQ, Zou WS. 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution. Talanta. 2011;85:469–75.

    CAS  Article  Google Scholar 

  9. 9.

    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, et al. Shape control of CdSe nanocrystals. Nature. 2000;404:59–61.

    CAS  Article  Google Scholar 

  10. 10.

    Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters. 2012;7:480; http://www.nanoscalereslett.com/content/7/1/480.

    Article  Google Scholar 

  11. 11.

    Costas-Mora I, Romero V, Lavilla I, Bendicho C. An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. Trends Anal Chem. 2014;57:64–72.

    CAS  Article  Google Scholar 

  12. 12.

    Sotelo-Gonzalez E, Fernandez-Argüelles MT, Costa-Fernandez JM, Sanz-Medel A. Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation. Anal Chim Acta. 2012;712:120–6.

    CAS  Article  Google Scholar 

  13. 13.

    Zhang C, Zhang K, Zhao T, Liu B, Wang Z, Zhang Z. Selective phosphorescence sensing of pesticide based on the inhibition of silver(I) quenched ZnS:Mn2+ quantum dots. Sensor Actuators B Chem. 2017;252:1083–8.

    CAS  Article  Google Scholar 

  14. 14.

    Gan T, Zhao N, Yin G, Liu J, Liu W. Mercaptopropionic acid-capped Mn-doped ZnS quantum dots and Pb2+ as sensing system for rapid and sensitive room-temperature phosphorescence detection of sulfide in water. J Photochem Photobiol A Chem. 2018;364:88–96.

    CAS  Article  Google Scholar 

  15. 15.

    Tan L, Li Y, Tang Y, Kang C, Yu Z, Xu S. Room temperature phosphorescence sensor for Hg2+ based on Mn-doped ZnS quantum dots. J Nanosci Nanotechnol. 2012;12:7788–95.

    CAS  Article  Google Scholar 

  16. 16.

    Chen J, Zhu Y, Zhang Y. Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb2+ ions. Spectrochim Acta A. 2016;164:98–102.

    CAS  Article  Google Scholar 

  17. 17.

    Deng P, Lu LQ, Cao WC, Tian XK. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots. Spectrochim Acta A. 2017;173:578–83.

    CAS  Article  Google Scholar 

  18. 18.

    Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.

    CAS  Article  Google Scholar 

  19. 19.

    Fu J, Chen L, Li J, Zhang Z. Current status and challenges of ion imprinting. J Mater Chem A. 2015;3:13598–13,627.

    CAS  Article  Google Scholar 

  20. 20.

    Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta. 2016;183:2677–95.

    CAS  Article  Google Scholar 

  21. 21.

    Liu G, Huang X, Li L, Xu X, Zhang Y, Lv J, et al. Recent advances and perspectives of molecularly imprinted polymer-based fluorescent sensors in food and environment analysis. Nanomaterials. 2019;9:1030. https://doi.org/10.3390/nano9071030.

    CAS  Article  PubMed Central  Google Scholar 

  22. 22.

    Qi J, Li B, Wang X, Zhang Z, Wang Z, Han J, et al. Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+and Hg2+ions based on ion imprinting technology. Sensor Actuators B Chem. 2017;251:224–33.

    CAS  Article  Google Scholar 

  23. 23.

    Zhang MY, Huang RF, Ma XG, Guo LH, Wang Y, Fan YM. Selective fluorescence sensor based on ion-imprinted polymer-modified quantum dots for trace detection of Cr(VI) in aqueous solution. Anal Bioanal Chem. 2019;411:7165–75.

    CAS  Article  Google Scholar 

  24. 24.

    Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, et al. Synthesis and characterization of novel molecularly imprinted polymer – coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron. 2016;75:213–21.

    Article  Google Scholar 

  25. 25.

    Ren X, Chen L. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens Bioelectron. 2015;64:182–8.

    CAS  Article  Google Scholar 

  26. 26.

    Piao Y, Burns A, Kim J, Wiesner U, Hyeon T. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater. 2008;18:3745–58.

    CAS  Article  Google Scholar 

  27. 27.

    Zhi K, Wang L, Zhang Y, Jiang Y, Zhang L, Yasin A. Influence of size and shape of silica supports on the sol–gel surface molecularly imprinted polymers for selective adsorption of gossypol. Materials. 2018. https://doi.org/10.3390/ma11050777.

    Article  Google Scholar 

  28. 28.

    Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc. 2005;127:4990–1.

    CAS  Article  Google Scholar 

  29. 29.

    Darbandi M, Thomann R, Nann T. Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater. 2005;17:5720–5.

    CAS  Article  Google Scholar 

  30. 30.

    Wei X, Zhou Z, Hao T, Li H, Xu Y, Lu K, et al. Highly-controllable imprinted polymer nanoshell at the surface of silica nanoparticles based room-temperature phosphorescence probe for detection of 2,4-dichlorophenol. Anal Chim Acta. 2015;870:83–91.

    CAS  Article  Google Scholar 

  31. 31.

    Babamiri B, Salimi A, Hallaj R. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@ CdS/dendrimer probe and Au nanoparticle quencher. Biosens Bioelectron. 2018;102:328–35.

    CAS  Article  Google Scholar 

  32. 32.

    Tsoi YK, Ho YM, Leung KSY. Selective recognition of arsenic by tailoring ion-imprinted polymer for ICP-MS quantification. Talanta. 2012;89:162–8.

    CAS  Article  Google Scholar 

  33. 33.

    Mohagheghpour E, Moztarzadeh F, Rabiee M, Tahriri M, Ashuri M, Sameie H, et al. Micro-emulsion synthesis, surface modification, and photophysical properties of nanocrystals for biomolecular recognition. IEEE Nanobiosci. 2012;11:317–23.

    Article  Google Scholar 

  34. 34.

    Uzuriaga-Sánchez RJ, Wong A, Khan S, Pividori MI, Picasso G, Sotomayor MDPT. Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound. Mater Sci Eng C. 2017;74:365–73.

    Article  Google Scholar 

  35. 35.

    Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl.Geochem. 2002;17:517–68.

    CAS  Article  Google Scholar 

  36. 36.

    Verma N, Singh AK, Saini N. Synthesis and characterization of ZnS quantum dots and application for development of arginine biosensor. Sens Biosensing Res. 2017;15:41–5.

    Article  Google Scholar 

  37. 37.

    Li H, Li Y, Cheng J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater. 2010;22:2451–7.

    CAS  Article  Google Scholar 

  38. 38.

    Fontanals N, Marcé RM, Galià M, Borrull F. Synthesis of hydrophilic sorbents from N-vinylimidazole/divinylbenzene and the evaluation of their sorption properties in the solid-phase extraction of polar compounds. J Polym Sci A Polym Chem. 2004;42:2019–25.

    CAS  Article  Google Scholar 

  39. 39.

    EURACHEM (2014) The Fitness for purpose of Analytical methods. 2 ed.: EURACHEM

  40. 40.

    EU/EC 1006/2015. Commission Regulation (EC), No 2015/1006 of amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs Official journal of European Union, L161, 14–16.

  41. 41.

    SANTE 2017. (11813) Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed: European Commission.

Download references

Acknowledgements

The authors thank to Dr. Bruno Dacuña-Mariño (Unidade de Raios X) at Rede de Infraestruturas de Apoio á Investigación e ao Desenvolvemento Tecnolóxico – University of Santiago de Compostela) for XRD technical support, to Eugenio Solla (Servicio de Microscopía Electrónica) at CACTI–University of Vigo for TEM/EDS technical support, and to Dr. María Celeiro (LIDSA, Department of Analytical Chemistry, Nutrition and Bromatology – University of Santiago de Compostela) for ASE technical assistance.

Funding

This work was supported by the Dirección Xeral de I+D – Xunta de Galicia Grupos de Referencia Competitiva (project number 6RC2014/2016 and ED431C2018/19), and Development of a Strategic Grouping in Materials - AEMAT (grant ED431E2018/08).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Moreda-Piñeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 335 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jinadasa, K.K., Peña-Vázquez, E., Bermejo-Barrera, P. et al. Synthesis and application of a surface ionic imprinting polymer on silica-coated Mn-doped ZnS quantum dots as a chemosensor for the selective quantification of inorganic arsenic in fish. Anal Bioanal Chem 412, 1663–1673 (2020). https://doi.org/10.1007/s00216-020-02405-1

Download citation

Keywords

  • Silica-coated Mn-doped ZnS quantum dots
  • Ionic imprinted polymer
  • Room temperature phosphorescence
  • Inorganic arsenic
  • Fish
  • Chemosensor probe