Data fusion strategies to combine sensor and multivariate model outputs for multivariate statistical process control


Process analytical technologies (PAT) applied to process monitoring and control generally provide multiple outputs that can come from different sensors or from different model outputs generated from a single multivariate sensor. This paper provides a contribution to current data fusion strategies for the combination of sensor and/or model outputs in the development of multivariate statistical process control (MSPC) models. Data fusion is explored through three real process examples combining output from multivariate models coming from the same sensor uniquely (in the near-infrared (NIR)-based end point detection of a two-stage polyester production process) or the combination of these outputs with other process variable sensors (using NIR-based model outputs and temperature values in the end point detection of a fluidized bed drying process and in the on-line control of a distillation process). The three examples studied show clearly the flexibility in the choice of model outputs (e.g. key properties prediction by multivariate calibration, process profiles issued from a multivariate resolution method) and the benefit of using MSPC models based on fused information including model outputs towards those based on raw single sensor outputs for both process control and diagnostic and interpretation of abnormal process situations. The data fusion strategy proposed is of general applicability for any analytical or bioanalytical process that produces several sensor and/or model outputs.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Gurden SP, Westerhuis JA, Smilde AK. Monitoring of batch processes using spectroscopy. AICHE J. 2002;48:2283–97.

    CAS  Article  Google Scholar 

  2. 2.

    Gabrielsson J, Jonsson H, Trygg J, Airiau C, Schmidt B, Escott R. Combining process and spectroscopic data to improve batch modeling. AICHE J. 2006;52:3164–72.

    CAS  Article  Google Scholar 

  3. 3.

    Huang J, Kaul G, Utz J, Hernandez P, Wong V, Bradley D, et al. A PAT approach to improve process understanding of high shear wet granulation through in-line particle measurement using FBRM C35. J Pharm Sci. 2010;99:3205–12.

    CAS  Article  Google Scholar 

  4. 4.

    Jin Y, Wu Z, Liu X, Wu Y. Near infrared spectroscopy in combination with chemometrics as a process analytical technology (PAT) tool for on-line quantitative monitoring of alcohol precipitation. J Pharm Biomed Anal. 2013;77:32–9.

    CAS  Article  Google Scholar 

  5. 5.

    Lourenço ND, Lopes JA, Almeida CF, Sarraguça MC, Pinheiro HM. Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem. 2012;404:1211–37.

    Article  Google Scholar 

  6. 6.

    Zhao C, Gao F, Wang F. Phase-based joint modeling and spectroscopy analysis for batch processes monitoring. Ind Eng Chem Res. 2010;49:669–81.

    CAS  Article  Google Scholar 

  7. 7.

    de Oliveira RR, Pedroza RHP, Sousa AO, Lima KMG, de Juan A. Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy. Anal Chim Acta. 2017;985:41–53.

    Article  Google Scholar 

  8. 8.

    Catelani TA, Santos JR, Páscoa RNMJ, Pezza L, Pezza HR, Lopes JA. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: a feasibility study. Talanta. 2018;179:292–9.

    CAS  Article  Google Scholar 

  9. 9.

    Nomikos P, MacGregor JF. Monitoring batch processes using multiway principal component analysis. AICHE J. 1994;40:1361–75.

    CAS  Article  Google Scholar 

  10. 10.

    Wold S, Kettaneh N, Friden H, Holmberg A. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemom Intell Lab Syst. 1998;44:331–40.

    CAS  Article  Google Scholar 

  11. 11.

    Huang H, Qu H. In-line monitoring of alcohol precipitation by near-infrared spectroscopy in conjunction with multivariate batch modeling. Anal Chim Acta. 2011;707:47–56.

    CAS  Article  Google Scholar 

  12. 12.

    Huang J, Goolcharran C, Utz J, Hernandez-Abad P, Ghosh K, Nagi A. A PAT approach to enhance process understanding of fluid bed granulation using in-line particle size characterization and multivariate analysis. J Pharm Innov. 2010;5:58–68.

    Article  Google Scholar 

  13. 13.

    Mattila M, Saloheimo K, Koskinen K. Improving the robustness of particle size analysis by multivariate statistical process control. Part Part Syst Charact. 2007;24:173–83.

    Article  Google Scholar 

  14. 14.

    Faggian A, Facco P, Doplicher F, Bezzo F, Barolo M. Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals. Chem Eng Res Des. 2009;87:325–34.

    CAS  Article  Google Scholar 

  15. 15.

    Marjanovic O, Lennox B, Sandoz D, Smith K, Crofts M. Real-time monitoring of an industrial batch process. Comput Chem Eng. 2006;30:1476–81.

    CAS  Article  Google Scholar 

  16. 16.

    Aguado D, Ferrer A, Ferrer J, Seco A. Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemom Intell Lab Syst. 2007;85:82–93.

    CAS  Article  Google Scholar 

  17. 17.

    González-Martínez JM, Ferrer A, Westerhuis JA. Real-time synchronization of batch trajectories for on-line multivariate statistical process control using dynamic time warping. Chemom Intell Lab Syst. 2011;105:195–206.

    Article  Google Scholar 

  18. 18.

    Cimander C, Mandenius CF. Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling. J Chem Technol Biotechnol. 2002;77:1157–68.

    CAS  Article  Google Scholar 

  19. 19.

    Cimander C, Carlsson M, Mandenius CF. Sensor fusion for on-line monitoring of yoghurt fermentation. J Biotechnol. 2002;99:237–48.

    CAS  Article  Google Scholar 

  20. 20.

    Jiang H, Chen Q. Development of electronic nose and near infrared spectroscopy analysis techniques to monitor the critical time in SSF process of feed protein. Sensors (Switzerland). 2014;14:19441–56.

    CAS  Article  Google Scholar 

  21. 21.

    Cocchi M (ed) (2019) Data fusion methodology and applications. In: Data Handl. Sci. Technol. Elsevier Ltd, pp 1–370.

  22. 22.

    Avila C, Ferré J, de Oliveira, Rodrigo Rocha de Juan A, Sinclair W, Mahdi F, Hassanpour A, Hunter TN, Bourne RA, Muller FL (2019) Process monitoring of moisture content and mass transfer rate in a fluidised bed with a low cost inline MEMS NIR sensor. Submitted.

  23. 23.

    Avila C, Mantzaridis C, Ferré J, et al (2019) Monitoring the production of saturated polyester resins using novel MEMS FPI near infrared spectral sensor. Submitted.

  24. 24.

    Zeaiter M, Rutledge D (2010) Preprocessing methods. In: Compr. Chemom. pp 121–231.

  25. 25.

    Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–39.

    CAS  Article  Google Scholar 

  26. 26.

    Brereton RG. Introduction to multivariate calibration in analytical chemistry. Analyst. 2000;125:2125–54.

    CAS  Article  Google Scholar 

  27. 27.

    Booksh KS, Kowalski BR. Theory of analytical chemistry. Anal Chem. 1994;66:782A–91A.

    CAS  Article  Google Scholar 

  28. 28.

    Martens H, Næs T. Multivariate calibration. New York: John Wiley & Sons; 1991.

    Google Scholar 

  29. 29.

    Thomas EV. A primer on multivariate calibration. Anal Chem. 1994;66:795A–804A.

    CAS  Article  Google Scholar 

  30. 30.

    Haaland DM, Thomas EV (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1202.

  31. 31.

    de Juan A, Jaumot J, Tauler R. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal Methods. 2014;6:4964–76.

    Article  Google Scholar 

  32. 32.

    de Juan A, Tauler R. Chemometrics applied to unravel multicomponent processes and mixtures. Anal Chim Acta. 2003;500:195–210.

    Article  Google Scholar 

  33. 33.

    Tauler R, Kowalski BR, Fleming S. Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Anal Chem. 1993;65:2040–7.

    CAS  Article  Google Scholar 

  34. 34.

    Tauler R, Maeder M, de Juan A (2009) Multiset data analysis: extended multivariate curve resolution. In: Compr. Chemom. Chem. Biochem. data Anal. four-volume set. Vol. 2, Chapter 2.24, S.D. Brown, R. Tauler, B. Walcz. Elsevier, pp 473–505.

  35. 35.

    Kourti T (2009) Multivariate statistical process control and process control, using latent variables. In: Compr. Chemom. Elsevier, pp 21–54.

  36. 36.

    Jackson JE, Mudholkar GS. Control procedures for residuals associated with principal component analysis. Technometrics. 1979;21:341–9.

    Article  Google Scholar 

  37. 37.

    MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Eng Pract. 1995;3:403–14.

    Article  Google Scholar 

  38. 38.

    Kourti T. Process analysis and abnormal situation detection: from theory to practice. IEEE Control Syst Mag. 2002;22:10–25.

    Article  Google Scholar 

Download references


This study received funding from the European Community’s Framework program for Research and Innovation Horizon 2020 (2014-2020) under grant agreement number 637232, related to the ProPAT project. This study also received funding from the Spanish government under the project CTQ2015-66254-C2-2-P.

Author information



Corresponding author

Correspondence to Rodrigo R. de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in Process Analytics and Control Technology with guest editor Christoph Herwig.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.R., Avila, C., Bourne, R. et al. Data fusion strategies to combine sensor and multivariate model outputs for multivariate statistical process control. Anal Bioanal Chem 412, 2151–2163 (2020).

Download citation


  • Data fusion
  • Multivariate statistical process control
  • Near-infrared
  • Spectroscopic sensors
  • Chemometrics