Skip to main content
Log in

Synthesis of bifunctional cabbage flower–like Ho3+/NiO nanostructures as a modifier for simultaneous determination of methotrexate and carbamazepine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cabbage flower–like Ho3+/NiO nanostructure (CFL-Ho3+/NiO NSs) with significant electrocatalytic oxidation has been published for the first time. First, structure and morphology of CFL-Ho3+/NiO-NSs have been described by XRD, SEM, and EDX methods. Then, CFL-Ho3+/NiO-NSs have been applied as a modifier for simultaneous electrochemical detection of methotrexate (MTX) and carbamazepine (CBZ). Functions of the modified electrode have been dealt with through electrochemical impedance spectroscopy (EIS). It has been demonstrated that the electrode response has been linear from 0.001–310.0 μM with a limit of detection of 5.2 nM and 4.5 nM (3 s/m) through DPV for MTX and CBZ. Diffusion coefficient (D) and heterogeneous rate constant (kh) have been detected for MTX and CBZ oxidation at the surface of the modified electrode. Moreover, CFL-Ho3+/NiO-NS/GCE has been employed for determining MTX and CBZ in urine and drug specimens. Outputs showed the analyte acceptable recovery. Therefore, the electrode could be applied to analyze both analytes in drug prescription and clinical laboratories.

Electrochemical sensor based on bifunctional cabbage flower–like Ho3+/NiO nanostructures modified glassy carbon electrode for simultaneous detecting methotrexate and carbamazepine was fabricated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Asadian E, Shahrokhian S, Zad AI, Ghorbani-Bidkorbeh F. Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate. Sensors Actuators B Chem. 2017;239:617–27.

    CAS  Google Scholar 

  2. Huang D, Wu H, Zhu Y, Su H, Zhang H, Sheng L, et al. Sensitive determination of anticancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode. Int J Electrochem Sci. 2019;14:3792–804.

    CAS  Google Scholar 

  3. Šelešovská R, Janíková-Bandžuchová L, Chýlková J. Sensitive voltammetric sensor based on boron-doped diamond electrode for determination of the chemotherapeutic drug methotrexate in pharmaceutical and biological samples. Electroanalysis. 2015;27:42–51.

    Google Scholar 

  4. Chen J, Fu B, Liu T, Yan Z, Li KA. graphene oxide-DNA electrochemical sensor based on glassy carbon electrode for sensitive determination of methotrexate. Electroanalysis. 2018;30:288–95.

    CAS  Google Scholar 

  5. Jagirani MS, Mahesar SA, Sherazi STH, Qureshi MS, Soomro RA, Lakho SA, et al. Electrochemical oxidation of methotrexate using pheniramine maleate functionalized gold nanoparticles modified electrode. Sens Lett. 2018;16:8–12.

    Google Scholar 

  6. Kummari S, Kumar VS, Satyanarayana M, Gobi KV. Direct electrochemical determination of methotrexate using functionalized carbon nanotube paste electrode as biosensor for in-vitro analysis of urine and dilute serum samples. Microchem J. 2019;148:626–33.

    CAS  Google Scholar 

  7. König A, Weidauer C, Seiwert B, Reemtsma T, Unger T, Jekel M. Reductive transformation of carbamazepine by abiotic and biotic processes. Water Res. 2016;101:272–80.

    PubMed  Google Scholar 

  8. Balasubramanian P, Balamurugan TST, Chen SM, Chen TW, Ali MA, Al-Hemaid FM, et al. An amperometric sensor for low level detection of antidepressant drug carbamazepine based on graphene oxide-g-C3N4 composite film modified electrode. J Electrochem Soc. 2018;165:B160–6.

    CAS  Google Scholar 

  9. Teradale AB, Lamani SD, Ganesh PS, Swamy BEK, Das SN. Electrochemical sensor for the determination of paracetamol at carbamazepine film coated carbon paste electrode. Z Phys Chem. 2018;232:345–58.

    CAS  Google Scholar 

  10. Tarahomi S, Rounaghi GH, Zavar MHA, Daneshvar L. Electrochemical sensor based on tio2 nanoparticles/nafion biocompatible film modified glassy carbon electrode for carbamazepine determination in pharmaceutical and urine samples. J Electrochem Soc. 2018;165:B946–52.

    CAS  Google Scholar 

  11. Lavanya N, Sekar C, Ficarra S, Tellone E, Bonavita A, Leonardi SG, et al. A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Mater Sci Eng. 2016;62:53–60.

    CAS  Google Scholar 

  12. Ghasemian S, Nasuhoglu D, Omanovic S, Yargeau V. Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn80%-W20%-oxide electrodes. Sep Purif Technol. 2017;188:52–9.

    CAS  Google Scholar 

  13. Hassaninejad-Darzi SK, Shajie F. Simultaneous determination of acetaminophen, pramipexole and carbamazepine by ZSM-5 nanozeolite and TiO2 nanoparticles modified carbon paste electrode. Mater Sci Eng. 2018;91:64–77.

    CAS  Google Scholar 

  14. Yang B, Deng J, Yu G, Deng S, Li J, Zhu C, et al. Effective degradation of carbamazepine using a novel electro-peroxone process involving simultaneous electrochemical generation of ozone and hydrogen peroxide. Electrochem Commun. 2018;86:26–9.

    CAS  Google Scholar 

  15. Gurung K, Ncibi MC, Shestakova M, Sillanpää M. Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Appl Catal B-Environ. 2018;221:329–38.

    CAS  Google Scholar 

  16. Kelmann R, Kuminek G, Teixeira H, Koester L. Determination of carbamazepine in parenteral nanoemulsions: development and validation of an HPLC method. Chromatographia. 2007;66:427–30.

    CAS  Google Scholar 

  17. Halwachs S, Lakoma C, Schafer I, Seibel P, Honscha W. The antiepileptic drugs phenobarbital and carbamazepine reduce transport of methotrexate in rat choroid plexus by down-regulation of the reduced folate carrier. Mol Pharmacol. 2011;80:621–9.

    CAS  PubMed  Google Scholar 

  18. Behbahani M, Najafi F, Bagheri S, Bojdi MK, Salarian M, Bagheri A. Application of surfactant assisted dispersive liquid-liquid microextraction as an efficient sample treatment technique for preconcentration and trace detection of zonisamide and carbamazepine in urine and plasma samples. J Chromatogr A. 2013;1308:25–31.

    CAS  PubMed  Google Scholar 

  19. Durán-Alvarez JC, Becerril-Bravo E, Castro VS, Jiménez B, Gibson R. The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography-mass spectrometry. Talanta. 2009;78:1159–66.

    PubMed  Google Scholar 

  20. Marziali E, Raggi MA, Komarova N, Kenndler E. Octakis-6-sulfato-γ-cyclodextrin as additive for capillary electrokinetic chromatography of dibenzoazepines: carbamazepine, oxcarbamazepine and their metabolites. Electrophoresis. 2002;23:3020–6.

    CAS  PubMed  Google Scholar 

  21. Maggs J, Pirmohamed M, Kitteringham N, Park B. Characterization of the metabolites of carbamazepine in patient urine by liquid chromatography/mass spectrometry. Drug Metab Dispos. 1997;25:275–80.

    CAS  PubMed  Google Scholar 

  22. Lee SH, Li M, Suh JK. Determination of carbamazepine by chemiluminescence detection using chemically prepared tris (2, 2′-bipyridine)-ruthenium (III) as oxidant. Anal Sci. 2003;19:903–6.

    CAS  PubMed  Google Scholar 

  23. Rezaei Z, Hemmateenejad B, Khabnadideh S, Gorgin M. Simultaneous spectrophotometric determination of carbamazepine and phenytoin in serum by PLS regression and comparison with HPLC. Talanta. 2005;65:21–8.

    CAS  PubMed  Google Scholar 

  24. Gupta VK, Agarwal S, Singhal B. Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen. 2011;14:284–302.

    CAS  PubMed  Google Scholar 

  25. Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A. Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4] arene as a cationic receptor. J Mol Liq. 2013;177:114–8.

    CAS  Google Scholar 

  26. Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liq. 2019;284:462–72.

    CAS  Google Scholar 

  27. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S. Electrochemical analysis of some toxic metals and drugs by ion selective electrodes. Crit Rev Anal Chem. 2011;41:282–313.

    CAS  PubMed  Google Scholar 

  28. Srivastava SK, Gupta VK, Jain S. Determination of lead using poly (vinyl chloride) based crown ether membrane. Analyst. 1995;120:495–8.

    CAS  Google Scholar 

  29. Chekin F, Myshin V, R, Melinte S, Singh SK, Kurungot S, Boukherroub R, Szunerits S, Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma. Anal Bioanal Chem 2019; 411: 1509–1516.

    CAS  PubMed  Google Scholar 

  30. Jain AK, Gupta VK, Sahoo BB, Singh LP. Copper(II)-selective electrodes based on macrocyclic compounds. Anal Proc Incl Anal Commun. 1995;32:99–101.

    Google Scholar 

  31. Gupta VK, Karimi-Maleh H, Sadegh R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. J Electrochem Sci. 2015;10:303–16.

    Google Scholar 

  32. Foroughi MM, Jahani S, Hasani Nadiki H. Lanthanium doped fern-like CuO nanoleaves/MWCNTs modified glassy carbon electrode for simultaneous determination of tramadol and acetaminophen. Sensors Actuators B Chem. 2019;285:562–70.

    CAS  Google Scholar 

  33. Gupta VK, Singh AK, Kumawat LK. Thiazole Schiff base turn-in fluorescent chemosensor for Al3+ ion. Sensors Actuators B Chem. 2014;195:98–108.

    CAS  Google Scholar 

  34. Srivastava SK, Gupta VK, Jain S. PVC-based 2,2,2-cryptand sensors for zinc ions. Anal Chem. 1996;68:1272–5.

    CAS  PubMed  Google Scholar 

  35. Rasa Pauliukaite R, Metelka R, Švancara I, Królicka A, Bobrowski A, Vytřas K, et al. Carbon paste electrodes modified with Bi2O3 as sensors for the determination of Cd and Pb. Anal Bioanal Chem. 2002;374:1155–8.

    PubMed  Google Scholar 

  36. Gupta VK, Pathania D, Agarwal S, Sharma S. Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent. J Mol Liq. 2012;174:86–94.

    CAS  Google Scholar 

  37. Gupta VK, Kumar S, Singh R, Singh LP, Shoora SK, Sethi B. Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. J Mol Liq. 2014;195:65–8.

    CAS  Google Scholar 

  38. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. A review on metal-organic frameworks: synthesis and applications. Trends Anal Chem. 2019;118:401–26.

    CAS  Google Scholar 

  39. Karthikeyan S, Boopathy R, Titus A, Sekaran G. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq. 2012;173:153–63.

    CAS  Google Scholar 

  40. Dehghani MH, Sanaei D, Ali I, Bhatnagar A. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq. 2016;215:671–9.

    CAS  Google Scholar 

  41. Qian P, Qin Y, Lyu Y, Li Y, Wang L, Wang S, et al. A hierarchical cobalt/carbon nanotube hybrid nanocomplex-based ratiometric fluorescent nanosensor for ultrasensitive detection of hydrogen peroxide and glucose in human serum. Anal Bioanal Chem. 2019;411:1517–24.

    CAS  PubMed  Google Scholar 

  42. Asfaram A, Ghaedi M, Agarwal S, Tyagi L, Gupta VK. Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 2015;5:18438–50.

    CAS  Google Scholar 

  43. Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 2014;48:210–7.

    CAS  PubMed  Google Scholar 

  44. Torkzadeh-Mahani R, Foroughi MM, Jahani S, Kazemipour M, Hassani Nadiki H. The effect of ultrasonic irradiation on the morphology of NiO/Co3O4 nanocomposite and its application to the simultaneous electrochemical determination of droxidopa and carbidopa. Ultrason Sonochem. 2019;56:183–92.

    CAS  PubMed  Google Scholar 

  45. Yola ML, Gupta VK, Eren T, Emre Şen A, Atar N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta. 2014;120:204–11.

    CAS  Google Scholar 

  46. Gupta VK, Mergu VN, Kumawat LK, Singh AK. Selective naked-eye detection of magnesium(II) ions using a coumarin-derived fluorescent probe. Sensors Actuators B Chem. 2015;207:216–23.

    CAS  Google Scholar 

  47. Jahani S. Evaluation of the usefulness of an electrochemical sensor in detecting ascorbic acid using a graphite screen-printed electrode modified with NiFe2O4 nanoparticles. Anal Bioanal Electrochem. 2018;10:739–50.

    CAS  Google Scholar 

  48. Gupta VK, Mergu N, Kumawat LK, Singh AK. A reversible fluorescence “off-on-off” sensor for sequential detection of aluminum and acetate/fluoride ions. Talanta. 2015;144:80–9.

    CAS  PubMed  Google Scholar 

  49. Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res. 2015;54:3634–9.

    CAS  Google Scholar 

  50. Mirzaei H, Nasiri AK, Mohamadee R, Yaghoobi H, Khatami M, Azizi O, et al. Direct growth of ternary copper nickel cobalt oxide nanowires as binder-free electrode on carbon cloth for nonenzymatic glucose sensing. Microchem J. 2018;142:343–51.

    CAS  Google Scholar 

  51. Jain AK, Gupta VK, Singh LP. Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal Proc Incl Anal Commun. 1995;32:263–5.

    CAS  Google Scholar 

  52. Ghanei-Motlagh M, Taher MA, Heydari A, Ghanei-Motlagh R, Gupta VK. A novel voltammetric sensor for sensitive detection of mercury (II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer. Mater Sci Eng C. 2016;63:367–75.

    CAS  Google Scholar 

  53. Arefi Nia N, Foroughi MM, Jahani S, Shahidi Zandi M, Rastakhiz N. Fabrication of a new electrochemical sensor for simultaneous determination of codeine and diclofenac using synergic effect of feather-type La3+-ZnO nano-flower. J Electrochem Soc. 2019;166:B489–97.

    Google Scholar 

  54. Goval RN, Gupta VK, Sangal A, Bachheti N. Voltammetric determination of uric acid at a fullerene-C60-modified glassy carbon electrode. Electroanalysis. 2005;17:2217–23.

    Google Scholar 

  55. Gupta VK, Kumar P. Cadmium (II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Anal Chim Acta. 1999;389:205–12.

    CAS  Google Scholar 

  56. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496–9.

    CAS  PubMed  Google Scholar 

  57. Yin XT, Zhou WD, Li J, Wang Q, Wu FY, Dastan D, et al. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J Alloys Compd. 2019;805:229–36.

    CAS  Google Scholar 

  58. Khatami M, Heli H, Mohammadzadeh Jahani P, Azizi H, Nobre MAL. Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotechnol. 2017;11:709–13.

    Google Scholar 

  59. Yin XT, Zhou WD, Li J, Lv P, Wang Q, Wang D, et al. Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J Mater Sci Mater Electron. 2019;30:14687–94.

    CAS  Google Scholar 

  60. Khatami M, Nejad MS, Salari S, Almani PGN. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol. 2016;10:237–43.

    PubMed  Google Scholar 

  61. Wang J, Zeng W, Wang Z. Assembly of 2D nanosheets into 3D flower-like NiO: synthesis and the influence of petal thickness on gas-sensing properties. Ceram Int. 2016;42:4567–73.

    CAS  Google Scholar 

  62. Needham SA, Wang GX, Liu HK. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J Power Sources. 2006;159:254–7.

    CAS  Google Scholar 

  63. Zhu LP, Liao GH, Yang Y, Xiao HM, Wang JF, Fu SY. Selfassembled 3D flower-like hierarchical b-Ni(OH)2 hollow architectures and their in situ thermal conversion to NiO. Nanoscale Res Lett. 2009;4:550–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Q, Chen Y, Yang T, Lei D, Zhang G, Mei L, et al. Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in lithium-ion batteries. Electrochim Acta. 2013;90:80–9.

    CAS  Google Scholar 

  65. Zhang F, Wang X, Zhang X, Turxun M, Yu H, Zhao J. The catalytic activity of NiO for N2O decomposition doubly promoted by barium and cerium. Chem Eng J. 2014;256:365–71.

    CAS  Google Scholar 

  66. Bloemen M, Vandendriessche S, Goovaerts V, Brullot W, Vanbel M, Carron S, et al. Synthesis and characterization of holmium-doped iron oxide nanoparticles. Materials. 2014;7:1155–64.

    PubMed  PubMed Central  Google Scholar 

  67. Bard A, Faulkner L. Electrochemical methods fundamentals and applications. 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  68. Foroughi MM, Jahani S, Rajaei M. Facile fabrication of 3D dandelion-like cobalt oxide nanoflowers and its functionalization in the first electrochemical sensing of oxymorphone: evaluation of kinetic parameters at the surface electrode. J Electrochem Soc. 2019;166:B1300–11.

    CAS  Google Scholar 

  69. Iranmanesh T, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta. 2020;207:120318.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Foroughi.

Ethics declarations

The study has been approved by the Islamic Azad University of Kerman Branch ethics committee and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, Z., Jahani, S., Zandi, M.S. et al. Synthesis of bifunctional cabbage flower–like Ho3+/NiO nanostructures as a modifier for simultaneous determination of methotrexate and carbamazepine. Anal Bioanal Chem 412, 1011–1024 (2020). https://doi.org/10.1007/s00216-019-02326-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02326-8

Keywords

Navigation