Abstract
Biosimilars are highly similar to, but not identical with, their originator products. As a result, structural differences between originators and biosimilars can be difficult to detect and characterize without the appropriate analytical tools. Therefore, we first focus on identifying initial structural differences between rituximab, bevacizumab, and trastuzumab originator and biosimilar pairs and later address how these differences change after applying thermal stress at 40 °C with orbital shaking for 4 weeks. Prior to incubation, we detected comparable secondary and tertiary structures for each pair and identified different levels of soluble aggregates, charge variants, and molecular weight variants due to differences in glycoforms and the number of C-terminal lysine groups. Over the course of incubation, we compared differences in charge variants and unfolding patterns. Taken together, our study provides a comparability exercise, providing information on the minor differences present between originator and biosimilar products and how those differences are impacted by stress.
This is a preview of subscription content, access via your institution.






References
U.S. Food and Drug Administration. Biosimilar product information. https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/therapeuticbiologicapplications/biosimilars/ucm580432.htm
Vulto AG, Jaquez OA. The process defines the product: what really matters in biosimilar design and production? Rheumatology (Oxford). 2017; Rheumatology (Oxford). 56:iv14–iv29.
Pisupati K, Tian Y, Okbazghi S, Benet A, Ackermann R, Ford M, et al. A multidimensional analytical comparison of Remicade and the biosimilar Remsima. Anal Chem. 2017;89:4838–46. https://doi.org/10.1021/acs.analchem.6b04436.
Jung SK, Lee KH, Jeon JW, Lee JW, Kwon BO, Kim YJ, et al. Physicochemical characterization of Remsima®. MAbs. 2014;6:1163–77. https://doi.org/10.4161/mabs.32221.
Hong J, Lee Y, Lee C, Eo S, Kim S, Lee N, et al. Physicochemical and biological characterization of SB2, a biosimilar of Remicade® (infliximab). MAbs. 2017;9:364–82. https://doi.org/10.1080/19420862.2016.1264550.
Cho IH, Lee N, Song D, Jung SY, Bou-Assaf G, Sosic Z, et al. Evaluation of the structural, physicochemical, and biological characteristics of SB4, a biosimilar of etanercept. MAbs. 2016;8:1136–55. https://doi.org/10.1080/19420862.2016.1193659.
Lee N, Lee JAJ, Yang H, Baek S, Kim S, Kim S, Lee T, Song D, Park G. Evaluation of similar quality attribute characteristics in SB5 and reference product of adalimumab. MAbs. 2019;11:129-44 https://doi.org/10.1080/19420862.2018.1530920.
Seo N, Polozova A, Zhang M, Yates Z, Cao S, Li H, et al. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab. MAbs. 2018;10:678–91. https://doi.org/10.1080/19420862.2018.1452580.
Velayudhan J, Chen Y, Rohrbach A, Pastula C, Maher G, Thomas H, et al. Demonstration of functional similarity of proposed biosimilar ABP 501 to adalimumab. BioDrugs. 2016;30:339–51. https://doi.org/10.1007/s40259-016-0185-2.
Schiestl M, Stangler T, Torella C, ÄŒepeljnik T, Toll H, Grau R. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol. 2011;29:310-2Â https://doi.org/10.1038/nbt.1839.
Lamanna WC, Mayer RE, Rupprechter A, Fuchs M, Higel F, Fritsch C, et al. The structure-function relationship of disulfide bonds in etanercept. Sci Rep. 2017;7:1–8. https://doi.org/10.1038/s41598-017-04320-5.
Amgen. AMJEVITA (adalimumab-atto) injection for subcutaneous use label. 2016; https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761024lbl.pdf
Ingelheim B. CYLTEZO (adalimumab-adbm) injection, for subcutaneous use label. 2017; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761058lbl.pdf
Abbvie. HUMIRA (adalimumab) injection for subcutaneous use label. 2017; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125057s399lbl.pdf
Genetech. HERCEPTIN intravenous infusion label. 2010; https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf
Mylan. OGIVRI (trastuzumab-dkst) for injection, for intravenous use label. 2017; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761074s000lbl.pdf
Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs - a review. J Pharm Anal. 2014;4:159–65. https://doi.org/10.1016/j.jpha.2013.09.003.
Nowak C, K. Cheung J, M. Dellatore S, Katiyar A, Bhat R, Sun J, Ponniah G, Neill A, Mason B, Beck A, Liu H. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs. 2017;9:1217-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680805/.
U.S. Food and Drug Administration. FDA Briefing Document Oncologic Drugs Advisory Committee BLA 761028 ABP215, a proposed biosimilar to Avastin (bevacizumab). 2017;
U.S. Food and Drug Administration. FDA Advisory Committee Briefing Document CT-P10, a Proposed Biosimilar to Rituxan. 2018;
U.S. Food and Drug Administration. FDA Briefing Document Oncologic Drugs Advisory Committee Meeting BLA 761074 MYL-1401O, a proposed biosimilar to Herceptin (trastuzumab). 2017;
U.S. Food and Drug Administration. FDA Briefing Document Arthritis Advisory Committee Meeting BLA 125544 CT-P13 , a proposed biosimilar to Remicade. 2016;
U.S. Food and Drug Administration. FDA Briefing Document Arthritis Advisory Committee Meeting BLA 761024 ABP-501, a proposed biosimilar to Humira (adalimumab). 2016;
Pisupati K, Benet A, Tian Y, Okbazghi S, Kang J, Ford M, Saveliev S, Sen KI, Carlson E, Tolbert TJ, Ruotolo BT, Schwendeman SP, Schwendeman A. Biosimilarity under stress: a forced degradation study of Remicade® and Remsima™. MAbs. 2017;9:1197-209. https://doi.org/10.1080/19420862.2017.1347741.
Industry G for. Q1A(R2) Stability testing of new drug substances and products. ICH. 2003; ICH.
European Biopharmaceutical Enterprises. Concept paper - forced degradation studies for therapeutic proteins. Eur Biopharm Enterp. 2015.
Haynes SE, Polasky DA, Dixit SM, Majmudar JD, Neeson K, Ruotolo BT, Martin BR. Variable-velocity traveling-wave ion mobility separation enhancing peak capacity for data-independent acquisition proteomics. Anal Chem. 2017;89:5669-72. https://doi.org/10.1021/acs.analchem.7b00112.
Polasky DA, Dixit SM, Fantin SM, Ruotolo BT. CIUSuite 2: next-generation software for the analysis of gas-phase protein unfolding data. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.8b05762.
Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1:2876–90. https://doi.org/10.1038/nprot.2006.202.Using.
Lakowicz JR. Principles of fluorescence spectroscopy, Third edit. Princ Fluoresc Spectrosc. 2006; Springer.
Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, et al. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J Mass Spectrom. 2015;50:285–97. https://doi.org/10.1002/jms.3554.
Hong P, Koza S, Bouvier ESP. A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35:2923-50. https://doi.org/10.1080/10826076.2012.743724.
Kanojia G, Have R Ten, Bakker A, Wagner K, Frijlink HW, Kersten GFA, Amorij JP. The production of a stable infliximab powder: the evaluation of spray and freeze-drying for production. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0163109.
Isoda Y, Yagi H, Satoh T, Shibata-Koyama M, Masuda K, Satoh M, Kato K, Iida S. Importance of the side chain at position 296 of antibody Fc in interactions with FcγRIIIa and other Fcγ receptors. PLoS One. 2015;10:e0140120. https://doi.org/10.1371/journal.pone.0140120.
Sun S, Akkapeddi P, Marques MC, MartÃnez-Sáez N, Torres VM, Cordeiro C, Boutureira O, Bernardes GJL. One-pot stapling of interchain disulfides of antibodies using an isobutylene motif. Org Biomol Chem. 2019. https://doi.org/10.1039/c8ob02877j.
Bandyopadhyay S, Mahajan M, Mehta T, Singh AK, Gupta AK, Parikh A, et al. Physicochemical and functional characterization of a biosimilar adalimumab ZRC-3197. Biosimilars. 2014;5:1–18. https://doi.org/10.2147/BS.S75573.
Tan Q, Guo Q, Fang C, Wang C, Li B, Wang H, Li J, Guo Y. Characterization and comparison of commercially available TNF receptor 2-Fc fusion protein products. MAbs. 2012;4:761-74. https://doi.org/10.4161/mabs.22276.
Genentech. Rituxan (rituximab) Injection for intravenous use. 2010; https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s5311lbl.pdf
Genentech. Avastin (bevacizumab) solution for intravenous infusion. 2009; https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/125085s0169lbl.pdf
Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing analytical similarity of proposed amgen biosimilar ABP 501 to adalimumab. BioDrugs. 2016;30:321–38. https://doi.org/10.1007/s40259-016-0184-3.
Nupur N, Chhabra N, Dash R, Rathore AS. Assessment of structural and functional similarity of biosimilar products: rituximab as a case study. MAbs. 2018;10:143-58. https://doi.org/10.1080/19420862.2017.1402996.
Lee KH, Lee J, Bae JS, Kim YJ, Kang HA, Kim SH, et al. Analytical similarity assessment of rituximab biosimilar CT-P10 to reference medicinal product. MAbs. 2018;10:380–96. https://doi.org/10.1080/19420862.2018.1433976.
Magnenata L, Palmeseb A, Fremauxc C ele, D’Amicid F, Terlizzesed M, Rossib M, Chevalet L. Demonstration of physicochemical and functional similarity between the proposed biosimilar adalimumab MSB11022 and Humira. MAbs. 2017;9:127–139. https://doi.org/10.1080/19420862.2016.1259046.
Sousa F, Sarmento B, Neves-Petersen MT. Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses. Eur J Pharm Sci. 2017;105:127-36. https://doi.org/10.1016/j.ejps.2017.05.019.
King AC, Woods M, Liu W, Lu Z, Gill D, Krebs MRH. High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-generated antibodies. Protein Sci. 2011;20:1546-57. https://doi.org/10.1002/pro.680.
A. Alsaddique J, M. Pabari R, Ramtoola Z. Effect of thermal and shear stressors on the physical properties, structural integrity and biological activity of the anti-TNF-alpha monoclonal antibody, infliximab. Curr Pharm Biotechnol. 2016;17:905-14. https://doi.org/10.2174/1389201017666160519111815.
Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103:796-809. https://doi.org/10.1002/jps.23839.
Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286:25118-33. https://doi.org/10.1074/jbc.M110.160457.
Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, Krieg J, Djidja MC, Baban A, Spindeldreher S, Koulov A V., Kiessling A. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One. 2014;9:e86322. https://doi.org/10.1371/journal.pone.0086322.
Zhang A, Singh SK, Shirts MR, Kumar S, Fernandez EJ. Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res. 2012;29:236-50. https://doi.org/10.1007/s11095-011-0538-y.
Paul M, Vieillard V, Jaccoulet E, Astier A. Long-term stability of diluted solutions of the monoclonal antibody rituximab. Int J Pharm. 2012;436:282-90. https://doi.org/10.1016/j.ijpharm.2012.06.063.
Kerr RA, Keire DA, Ye H. The impact of standard accelerated stability conditions on antibody higher order structure as assessed by mass spectrometry. MAbs. 2019;11:930-41. https://doi.org/10.1080/19420862.2019.1599632.
Dakshinamurthy P, Mukunda P, Prasad Kodaganti B, Shenoy BR, Natarajan B, Maliwalave A, et al. Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals. 2017;46:46–56. https://doi.org/10.1016/j.biologicals.2016.12.006.
Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs. 2010;2:613–24. https://doi.org/10.4161/mabs.2.6.13333.
Schmid I, Bonnington L, Gerl M, Bomans K, Thaller AL, Wagner K, Schlothauer T, Falkenstein R, Zimmermann B, Kopitz J, Hasmann M, Bauss F, Haberger M, Reusch D, Bulau P. Assessment of susceptible chemical modification sites of trastuzumab and endogenous human immunoglobulins at physiological conditions. Commun Biol. 2018. https://doi.org/10.1038/s42003-018-0032-8.
Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, Zwick A, Spick C, Kepert JF, Hienz B, Wiedmann M, Beck H, Metzger P, Mølhøj M, Knoblich C, Grauschopf U, Reusch D, Bulau P. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: susceptibility vs. functionality of critical quality attributes. MAbs. 2014;327–39. https://doi.org/10.4161/mabs.27876.
Yan B, Steen S, Hambly D, Valliere-Douglass J, Vanden Bos T, Smallwood S, Yates Z, Arroll T, Han Y, Gadgil H, Latypov RF, Wallace A, Lim A, Kleemann GR, Wang W, Balland A. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. J Pharm Sci. 2009;98:3509-21. https://doi.org/10.1002/jps.21655.
Chumsae C, Gaza-Bulseco G, Sun J, Liu H. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B Anal Technol Biomed Life Sci. 2007;850:285–94. https://doi.org/10.1016/j.jchromb.2006.11.050.
Kim J, Jones L, Taylor L, Kannan G, Jackson F, Lau H, Latypov RF, Bailey B. Characterization of a unique IgG1 mAb CEX profile by limited Lys-C proteolysis/CEX separation coupled with mass spectrometry and structural analysis. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:1973-81. https://doi.org/10.1016/j.jchromb.2010.05.032.
Kim DG, Kim HJ, Kim HJ. Effects of carboxypeptidase B treatment and elevated temperature on recombinant monoclonal antibody charge variants in cation-exchange chromatography analysis. Arch Pharm Res. 2016;39:1472-81. https://doi.org/10.1007/s12272-016-0818-5.
:Griaud F, Denefeld B, Lang M, Hensinger H, Haberl P, Berg M. Unbiased in-depth c-aracterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry. MAbs. 2017;9:820-30. https://doi.org/10.1080/19420862.2017.1313367.
Chelius D, Render DS, Bondarenko PV. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal Chem. 2005;77:6004–11. https://doi.org/10.1021/ac050672d.
Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, Zwick A, Spick C, Kepert JF, Hienz B, Wiedmann M, Beck H, Metzger P, Mølhøj M, Knoblich C, Grauschopf U, Reusch D, Bulau P. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies. MAbs. 2014;6:327-39. https://doi.org/10.4161/mabs.27876.
Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M, et al. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs. 2010;2:379–94. https://doi.org/10.4161/mabs.11986.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 685Â kb)
Rights and permissions
About this article
Cite this article
Kang, J., Halseth, T., Vallejo, D. et al. Assessment of biosimilarity under native and heat-stressed conditions: rituximab, bevacizumab, and trastuzumab originators and biosimilars. Anal Bioanal Chem 412, 763–775 (2020). https://doi.org/10.1007/s00216-019-02298-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-019-02298-9