Assessment of biosimilarity under native and heat-stressed conditions: rituximab, bevacizumab, and trastuzumab originators and biosimilars

Abstract

Biosimilars are highly similar to, but not identical with, their originator products. As a result, structural differences between originators and biosimilars can be difficult to detect and characterize without the appropriate analytical tools. Therefore, we first focus on identifying initial structural differences between rituximab, bevacizumab, and trastuzumab originator and biosimilar pairs and later address how these differences change after applying thermal stress at 40 °C with orbital shaking for 4 weeks. Prior to incubation, we detected comparable secondary and tertiary structures for each pair and identified different levels of soluble aggregates, charge variants, and molecular weight variants due to differences in glycoforms and the number of C-terminal lysine groups. Over the course of incubation, we compared differences in charge variants and unfolding patterns. Taken together, our study provides a comparability exercise, providing information on the minor differences present between originator and biosimilar products and how those differences are impacted by stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    U.S. Food and Drug Administration. Biosimilar product information. https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/therapeuticbiologicapplications/biosimilars/ucm580432.htm

  2. 2.

    Vulto AG, Jaquez OA. The process defines the product: what really matters in biosimilar design and production? Rheumatology (Oxford). 2017; Rheumatology (Oxford). 56:iv14–iv29.

    CAS  PubMed  Google Scholar 

  3. 3.

    Pisupati K, Tian Y, Okbazghi S, Benet A, Ackermann R, Ford M, et al. A multidimensional analytical comparison of Remicade and the biosimilar Remsima. Anal Chem. 2017;89:4838–46. https://doi.org/10.1021/acs.analchem.6b04436.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Jung SK, Lee KH, Jeon JW, Lee JW, Kwon BO, Kim YJ, et al. Physicochemical characterization of Remsima®. MAbs. 2014;6:1163–77. https://doi.org/10.4161/mabs.32221.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hong J, Lee Y, Lee C, Eo S, Kim S, Lee N, et al. Physicochemical and biological characterization of SB2, a biosimilar of Remicade® (infliximab). MAbs. 2017;9:364–82. https://doi.org/10.1080/19420862.2016.1264550.

    PubMed  Google Scholar 

  6. 6.

    Cho IH, Lee N, Song D, Jung SY, Bou-Assaf G, Sosic Z, et al. Evaluation of the structural, physicochemical, and biological characteristics of SB4, a biosimilar of etanercept. MAbs. 2016;8:1136–55. https://doi.org/10.1080/19420862.2016.1193659.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lee N, Lee JAJ, Yang H, Baek S, Kim S, Kim S, Lee T, Song D, Park G. Evaluation of similar quality attribute characteristics in SB5 and reference product of adalimumab. MAbs. 2019;11:129-44 https://doi.org/10.1080/19420862.2018.1530920.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Seo N, Polozova A, Zhang M, Yates Z, Cao S, Li H, et al. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab. MAbs. 2018;10:678–91. https://doi.org/10.1080/19420862.2018.1452580.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Velayudhan J, Chen Y, Rohrbach A, Pastula C, Maher G, Thomas H, et al. Demonstration of functional similarity of proposed biosimilar ABP 501 to adalimumab. BioDrugs. 2016;30:339–51. https://doi.org/10.1007/s40259-016-0185-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Schiestl M, Stangler T, Torella C, Čepeljnik T, Toll H, Grau R. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol. 2011;29:310-2 https://doi.org/10.1038/nbt.1839.

    CAS  PubMed  Google Scholar 

  11. 11.

    Lamanna WC, Mayer RE, Rupprechter A, Fuchs M, Higel F, Fritsch C, et al. The structure-function relationship of disulfide bonds in etanercept. Sci Rep. 2017;7:1–8. https://doi.org/10.1038/s41598-017-04320-5.

    CAS  Google Scholar 

  12. 12.

    Amgen. AMJEVITA (adalimumab-atto) injection for subcutaneous use label. 2016; https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761024lbl.pdf

  13. 13.

    Ingelheim B. CYLTEZO (adalimumab-adbm) injection, for subcutaneous use label. 2017; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761058lbl.pdf

  14. 14.

    Abbvie. HUMIRA (adalimumab) injection for subcutaneous use label. 2017; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125057s399lbl.pdf

  15. 15.

    Genetech. HERCEPTIN intravenous infusion label. 2010; https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103792s5250lbl.pdf

  16. 16.

    Mylan. OGIVRI (trastuzumab-dkst) for injection, for intravenous use label. 2017; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761074s000lbl.pdf

  17. 17.

    Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs - a review. J Pharm Anal. 2014;4:159–65. https://doi.org/10.1016/j.jpha.2013.09.003.

    CAS  PubMed  Google Scholar 

  18. 18.

    Nowak C, K. Cheung J, M. Dellatore S, Katiyar A, Bhat R, Sun J, Ponniah G, Neill A, Mason B, Beck A, Liu H. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs. 2017;9:1217-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680805/.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    U.S. Food and Drug Administration. FDA Briefing Document Oncologic Drugs Advisory Committee BLA 761028 ABP215, a proposed biosimilar to Avastin (bevacizumab). 2017;

  20. 20.

    U.S. Food and Drug Administration. FDA Advisory Committee Briefing Document CT-P10, a Proposed Biosimilar to Rituxan. 2018;

  21. 21.

    U.S. Food and Drug Administration. FDA Briefing Document Oncologic Drugs Advisory Committee Meeting BLA 761074 MYL-1401O, a proposed biosimilar to Herceptin (trastuzumab). 2017;

  22. 22.

    U.S. Food and Drug Administration. FDA Briefing Document Arthritis Advisory Committee Meeting BLA 125544 CT-P13 , a proposed biosimilar to Remicade. 2016;

  23. 23.

    U.S. Food and Drug Administration. FDA Briefing Document Arthritis Advisory Committee Meeting BLA 761024 ABP-501, a proposed biosimilar to Humira (adalimumab). 2016;

  24. 24.

    Pisupati K, Benet A, Tian Y, Okbazghi S, Kang J, Ford M, Saveliev S, Sen KI, Carlson E, Tolbert TJ, Ruotolo BT, Schwendeman SP, Schwendeman A. Biosimilarity under stress: a forced degradation study of Remicade® and Remsima™. MAbs. 2017;9:1197-209. https://doi.org/10.1080/19420862.2017.1347741.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Industry G for. Q1A(R2) Stability testing of new drug substances and products. ICH. 2003; ICH.

  26. 26.

    European Biopharmaceutical Enterprises. Concept paper - forced degradation studies for therapeutic proteins. Eur Biopharm Enterp. 2015.

  27. 27.

    Haynes SE, Polasky DA, Dixit SM, Majmudar JD, Neeson K, Ruotolo BT, Martin BR. Variable-velocity traveling-wave ion mobility separation enhancing peak capacity for data-independent acquisition proteomics. Anal Chem. 2017;89:5669-72. https://doi.org/10.1021/acs.analchem.7b00112.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Polasky DA, Dixit SM, Fantin SM, Ruotolo BT. CIUSuite 2: next-generation software for the analysis of gas-phase protein unfolding data. Anal Chem. 2019. https://doi.org/10.1021/acs.analchem.8b05762.

    CAS  PubMed  Google Scholar 

  29. 29.

    Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1:2876–90. https://doi.org/10.1038/nprot.2006.202.Using.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lakowicz JR. Principles of fluorescence spectroscopy, Third edit. Princ Fluoresc Spectrosc. 2006; Springer.

  31. 31.

    Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, et al. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J Mass Spectrom. 2015;50:285–97. https://doi.org/10.1002/jms.3554.

    CAS  PubMed  Google Scholar 

  32. 32.

    Hong P, Koza S, Bouvier ESP. A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35:2923-50. https://doi.org/10.1080/10826076.2012.743724.

    CAS  Google Scholar 

  33. 33.

    Kanojia G, Have R Ten, Bakker A, Wagner K, Frijlink HW, Kersten GFA, Amorij JP. The production of a stable infliximab powder: the evaluation of spray and freeze-drying for production. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0163109.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Isoda Y, Yagi H, Satoh T, Shibata-Koyama M, Masuda K, Satoh M, Kato K, Iida S. Importance of the side chain at position 296 of antibody Fc in interactions with FcγRIIIa and other Fcγ receptors. PLoS One. 2015;10:e0140120. https://doi.org/10.1371/journal.pone.0140120.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sun S, Akkapeddi P, Marques MC, Martínez-Sáez N, Torres VM, Cordeiro C, Boutureira O, Bernardes GJL. One-pot stapling of interchain disulfides of antibodies using an isobutylene motif. Org Biomol Chem. 2019. https://doi.org/10.1039/c8ob02877j.

    CAS  Google Scholar 

  36. 36.

    Bandyopadhyay S, Mahajan M, Mehta T, Singh AK, Gupta AK, Parikh A, et al. Physicochemical and functional characterization of a biosimilar adalimumab ZRC-3197. Biosimilars. 2014;5:1–18. https://doi.org/10.2147/BS.S75573.

    Google Scholar 

  37. 37.

    Tan Q, Guo Q, Fang C, Wang C, Li B, Wang H, Li J, Guo Y. Characterization and comparison of commercially available TNF receptor 2-Fc fusion protein products. MAbs. 2012;4:761-74. https://doi.org/10.4161/mabs.22276.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Genentech. Rituxan (rituximab) Injection for intravenous use. 2010; https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s5311lbl.pdf

  39. 39.

    Genentech. Avastin (bevacizumab) solution for intravenous infusion. 2009; https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/125085s0169lbl.pdf

  40. 40.

    Liu J, Eris T, Li C, Cao S, Kuhns S. Assessing analytical similarity of proposed amgen biosimilar ABP 501 to adalimumab. BioDrugs. 2016;30:321–38. https://doi.org/10.1007/s40259-016-0184-3.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Nupur N, Chhabra N, Dash R, Rathore AS. Assessment of structural and functional similarity of biosimilar products: rituximab as a case study. MAbs. 2018;10:143-58. https://doi.org/10.1080/19420862.2017.1402996.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lee KH, Lee J, Bae JS, Kim YJ, Kang HA, Kim SH, et al. Analytical similarity assessment of rituximab biosimilar CT-P10 to reference medicinal product. MAbs. 2018;10:380–96. https://doi.org/10.1080/19420862.2018.1433976.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Magnenata L, Palmeseb A, Fremauxc C ele, D’Amicid F, Terlizzesed M, Rossib M, Chevalet L. Demonstration of physicochemical and functional similarity between the proposed biosimilar adalimumab MSB11022 and Humira. MAbs. 2017;9:127–139. https://doi.org/10.1080/19420862.2016.1259046.

    PubMed Central  Google Scholar 

  44. 44.

    Sousa F, Sarmento B, Neves-Petersen MT. Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses. Eur J Pharm Sci. 2017;105:127-36. https://doi.org/10.1016/j.ejps.2017.05.019.

    CAS  PubMed  Google Scholar 

  45. 45.

    King AC, Woods M, Liu W, Lu Z, Gill D, Krebs MRH. High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-generated antibodies. Protein Sci. 2011;20:1546-57. https://doi.org/10.1002/pro.680.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    A. Alsaddique J, M. Pabari R, Ramtoola Z. Effect of thermal and shear stressors on the physical properties, structural integrity and biological activity of the anti-TNF-alpha monoclonal antibody, infliximab. Curr Pharm Biotechnol. 2016;17:905-14. https://doi.org/10.2174/1389201017666160519111815.

    PubMed  Google Scholar 

  47. 47.

    Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103:796-809. https://doi.org/10.1002/jps.23839.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286:25118-33. https://doi.org/10.1074/jbc.M110.160457.

    CAS  PubMed  Google Scholar 

  49. 49.

    Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, Krieg J, Djidja MC, Baban A, Spindeldreher S, Koulov A V., Kiessling A. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One. 2014;9:e86322. https://doi.org/10.1371/journal.pone.0086322.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zhang A, Singh SK, Shirts MR, Kumar S, Fernandez EJ. Distinct aggregation mechanisms of monoclonal antibody under thermal and freeze-thaw stresses revealed by hydrogen exchange. Pharm Res. 2012;29:236-50. https://doi.org/10.1007/s11095-011-0538-y.

    PubMed  Google Scholar 

  51. 51.

    Paul M, Vieillard V, Jaccoulet E, Astier A. Long-term stability of diluted solutions of the monoclonal antibody rituximab. Int J Pharm. 2012;436:282-90. https://doi.org/10.1016/j.ijpharm.2012.06.063.

    CAS  PubMed  Google Scholar 

  52. 52.

    Kerr RA, Keire DA, Ye H. The impact of standard accelerated stability conditions on antibody higher order structure as assessed by mass spectrometry. MAbs. 2019;11:930-41. https://doi.org/10.1080/19420862.2019.1599632.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Dakshinamurthy P, Mukunda P, Prasad Kodaganti B, Shenoy BR, Natarajan B, Maliwalave A, et al. Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals. 2017;46:46–56. https://doi.org/10.1016/j.biologicals.2016.12.006.

    CAS  PubMed  Google Scholar 

  54. 54.

    Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, et al. Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs. 2010;2:613–24. https://doi.org/10.4161/mabs.2.6.13333.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Schmid I, Bonnington L, Gerl M, Bomans K, Thaller AL, Wagner K, Schlothauer T, Falkenstein R, Zimmermann B, Kopitz J, Hasmann M, Bauss F, Haberger M, Reusch D, Bulau P. Assessment of susceptible chemical modification sites of trastuzumab and endogenous human immunoglobulins at physiological conditions. Commun Biol. 2018. https://doi.org/10.1038/s42003-018-0032-8.

  56. 56.

    Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, Zwick A, Spick C, Kepert JF, Hienz B, Wiedmann M, Beck H, Metzger P, Mølhøj M, Knoblich C, Grauschopf U, Reusch D, Bulau P. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: susceptibility vs. functionality of critical quality attributes. MAbs. 2014;327–39. https://doi.org/10.4161/mabs.27876.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yan B, Steen S, Hambly D, Valliere-Douglass J, Vanden Bos T, Smallwood S, Yates Z, Arroll T, Han Y, Gadgil H, Latypov RF, Wallace A, Lim A, Kleemann GR, Wang W, Balland A. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. J Pharm Sci. 2009;98:3509-21. https://doi.org/10.1002/jps.21655.

    CAS  PubMed  Google Scholar 

  58. 58.

    Chumsae C, Gaza-Bulseco G, Sun J, Liu H. Comparison of methionine oxidation in thermal stability and chemically stressed samples of a fully human monoclonal antibody. J Chromatogr B Anal Technol Biomed Life Sci. 2007;850:285–94. https://doi.org/10.1016/j.jchromb.2006.11.050.

    CAS  Google Scholar 

  59. 59.

    Kim J, Jones L, Taylor L, Kannan G, Jackson F, Lau H, Latypov RF, Bailey B. Characterization of a unique IgG1 mAb CEX profile by limited Lys-C proteolysis/CEX separation coupled with mass spectrometry and structural analysis. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:1973-81. https://doi.org/10.1016/j.jchromb.2010.05.032.

    CAS  Google Scholar 

  60. 60.

    Kim DG, Kim HJ, Kim HJ. Effects of carboxypeptidase B treatment and elevated temperature on recombinant monoclonal antibody charge variants in cation-exchange chromatography analysis. Arch Pharm Res. 2016;39:1472-81. https://doi.org/10.1007/s12272-016-0818-5.

    CAS  PubMed  Google Scholar 

  61. 61.

    :Griaud F, Denefeld B, Lang M, Hensinger H, Haberl P, Berg M. Unbiased in-depth c-aracterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry. MAbs. 2017;9:820-30. https://doi.org/10.1080/19420862.2017.1313367.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chelius D, Render DS, Bondarenko PV. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal Chem. 2005;77:6004–11. https://doi.org/10.1021/ac050672d.

    CAS  PubMed  Google Scholar 

  63. 63.

    Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, Zwick A, Spick C, Kepert JF, Hienz B, Wiedmann M, Beck H, Metzger P, Mølhøj M, Knoblich C, Grauschopf U, Reusch D, Bulau P. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies. MAbs. 2014;6:327-39. https://doi.org/10.4161/mabs.27876.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Xie H, Chakraborty A, Ahn J, Yu YQ, Dakshinamoorthy DP, Gilar M, et al. Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs. 2010;2:379–94. https://doi.org/10.4161/mabs.11986.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Schwendeman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 685 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Halseth, T., Vallejo, D. et al. Assessment of biosimilarity under native and heat-stressed conditions: rituximab, bevacizumab, and trastuzumab originators and biosimilars. Anal Bioanal Chem 412, 763–775 (2020). https://doi.org/10.1007/s00216-019-02298-9

Download citation

Keywords

  • mAb
  • Biosimilar
  • Stressed condition
  • Rituximab
  • Bevacizumab
  • Trastuzumab