Skip to main content
Log in

Highly sensitive and selective fluorescent monomer/polymer probes for Hg2+ and Ag+ recognition and imaging of Hg2+ in living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of heavy metals such as Hg2+ and Ag+ is important and urgent. In this work, – NO2/– NH2/C=S boron dipyrromethene small molecular derivatives were synthesized at first. Then they were incorporated into polymer chains. The macromolecular fluorescent probes were obtained via Sonogashira reaction using the small molecular probes as building blocks. The as-prepared small-molecule fluorescent probe BO3 exhibits high sensing performance for Hg2+. By introducing it into macromolecules, the sensing ability still remains, and even more, the recognition performance is improved. The macromolecular fluorescent probes P1, P2, and P3 also have high recognition ability for Ag+ with a binding ratio of 2:1 (metal ion to probe ratio). Through the study of the sensing mechanism and the recycling experiments, it is found that the probes responded by the photo-induced electron transfer mechanism and can be recycled and reused. At the same time, BO3, P2, and P3 show excellent recognition performance for Hg2+ in living cells and zebrafish. Living cell imaging experiments indicated that these fluorescent probes had good cell membrane permeability and low cytotoxicity, and could realize bioimaging of Hg2+. Therefore, the application value of these fluorescent probes could be enlarged.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fernando JFS, Shortell MP, Firestein KL, Zhang C, Larionov KV, Popov ZI, et al. Photocatalysis with Pt-Au-ZnO and Au-ZnO hybrids: effect of charge accumulation and discharge properties of metal nanoparticles. Langmuir. 2018;34(25):7334–45.

    CAS  PubMed  Google Scholar 

  2. Hu H, Wang Z, Pan L. Synthesis of monodisperse Fe3O4@silica core-shell microspheres and their application for removal of heavy metal ions from water. J Alloy Compd. 2010;492(1–2):656–61.

    CAS  Google Scholar 

  3. Somura H, Takeda I, Mori Y. Influence of puddling procedures on the quality of rice paddy drainage water. Agr Water Manage. 2009;96(6):1052–8.

    Google Scholar 

  4. Zhu D, Zhao D, Huang J, Li J, Zuo X, Wang L, et al. Protein-mimicking nanoparticle (Protmin)-based nanosensor for intracellular analysis of metal ions. Nucl Sci Tech. 2018;29(1).

  5. Huppertsberg S, Knepper TP. Instrumental analysis of microplastics–benefits and challenges. Anal Bioanal Chem. 2018;410(25):6343–52.

    CAS  PubMed  Google Scholar 

  6. Winsberg J, Hagemann T, Muench S, Friebe C, Häupler B, Janoschka T, et al. Poly (boron-dipyrromethene)–a redox-active polymer class for polymer redox-flow batteries. Chem Mater. 2016;28(10):3401–5.

    CAS  Google Scholar 

  7. Li J, Liu Q, Wan Y, Wu X, Yang Y, Zhao R, et al. Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay. Anal Bioanal Chem. 2019;411(23):6067–80.

    CAS  PubMed  Google Scholar 

  8. Golcs Á, Horváth V, Huszthy P, Tóth T. Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore. Sensors-Basel. 2018;18(5):1407.

    PubMed Central  Google Scholar 

  9. Jia J, Gu Z, Li R, Huang M, Xu C, Wang Y, et al. Design and synthesis of fluorescent sensors for zinc ion derived from 2-aminobenzamide. Eur J Org Chem. 2011;2011(24):4609–15.

    CAS  Google Scholar 

  10. Strehl C, Gaber T, Jakstadt M, Hahne M, Hoff P, Spies CM, et al. High-sensitivity immunofluorescence staining: a comparison of the liposome procedure and the FASER technique on mGR detection. J Fluoresc. 2013;23(3):509–18.

    CAS  PubMed  Google Scholar 

  11. Zhou Q, Lin Y, Xu M, Gao Z, Yang H, Tang D. Facile synthesis of enhanced fluorescent gold–silver bimetallic nanocluster and its application for highly sensitive detection of inorganic pyrophosphatase activity. Anal Chem. 2016;88(17):8886–92.

    CAS  PubMed  Google Scholar 

  12. Niu B, Xiao K, Huang X, Zhang Z, Kong X, Wang Z, et al. High-sensitivity detection of iron (III) by dopamine-modified funnel-shaped nanochannels. Acs Appl Mater Inter. 2018;10(26):22632–9.

    CAS  Google Scholar 

  13. Korganbayev S, Min R, Jelbuldina M, Hu X, Caucheteur C, Bang O, et al. Thermal profile detection through high-sensitivity fiber optic chirped Bragg grating on microstructured PMMA fiber. J Lightwave Technol. 2018;36(20):4723–9.

    CAS  Google Scholar 

  14. Davis EJ, Jones M, Thiel DA, Pauls S. Using open-source, 3D printable optical hardware to enhance student learning in the instrumental analysis laboratory. J Chem Educ. 2018;95(4):672–7.

    CAS  Google Scholar 

  15. Cha Y, Price T, Wei Z, Lu X, Rewkowski N, Chabra R, et al. Towards fully mobile 3D face, body, and environment capture using only head-worn cameras. Ieee T Vis Comput Gr. 2018;24(11):2993–3004.

    Google Scholar 

  16. Zhang X, Zhang GQ, Zhu J. Methylated unsymmetric BODIPY compounds: synthesis, high fluorescence quantum yield and long fluorescence time. J Fluoresc. 2019;29(2):407–16.

    CAS  PubMed  Google Scholar 

  17. Müller K, Klapper M, Müllen K. Synthesis of conjugated polymer nanoparticles in non-aqueous emulsions. Macromol Rapid Comm. 2006;27(8):586–93.

    Google Scholar 

  18. Xu Q, An L, Yu M, Wang S. Design and synthesis of a new conjugated polyelectrolyte as a reversible pH sensor. Macromol Rapid Comm. 2008;29(5):390–5.

    CAS  Google Scholar 

  19. Gao F, Liao Q, Xu Z, Yue Y, Wang Q, Zhang H, et al. Strong two-photon excited fluorescence and stimulated emission from an organic single crystal of an oligo (phenylene vinylene). Angew Chem. 2010;49(4):732–5.

    CAS  Google Scholar 

  20. He T, Tang D, Lin C, Shen X, Lu C, Xu L, et al. Conjugated polymers containing BODIPY and fluorene units for sensitive detection of CN ions: site-selective synthesis, photo-physical and electrochemical properties. Polymers-Basel. 2017;9(12):512.

    PubMed Central  Google Scholar 

  21. Shi W, Lo P, Singh A, Ledoux-Rak I, Ng DKP. Synthesis and second-order nonlinear optical properties of push-pull BODIPY derivatives. Tetrahedron. 2012;68(42):8712–8.

    CAS  Google Scholar 

  22. Babkina SS, Ulakhovich NA. Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensor. Anal Chem. 2005;77(17):5678–85.

    CAS  PubMed  Google Scholar 

  23. Chu H, Lee K, Lim S, Kim T. Enhancing the performance of a silicon anode by using a new conjugated polymer binder prepared by direct arylation. Macromol Res. 2018;26(8):738–43.

    CAS  Google Scholar 

  24. Duan Y, Zhang J, Fan X, Xu K. Influence of one CO molecule on structural and electronic properties of monatomic Cu chain. Phys. E: 2015;73:89–95.

    CAS  Google Scholar 

  25. Hofmann D, Tenzer S, Bannwarth MB, Messerschmidt C, Glaser S, Schild H, et al. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS Nano. 2014;8(10):10077–88.

    CAS  PubMed  Google Scholar 

  26. Joo Y, Huang L, Eedugurala N, London AE, Kumar A, Wong BM, et al. Thermoelectric performance of an open-shell donor-acceptor conjugated polymer doped with a radical-containing small molecule. Macromolecules. 2018;51(10):3886–94.

    CAS  Google Scholar 

  27. Figliola C, Robertson KN, Greening S, Thompson A. Asymmetric dipyrrin and F -BODIPYs conjugated to terminal alkynes and alkenes. J Org Chem. 2017;82(13):7059–64.

    CAS  PubMed  Google Scholar 

  28. Bruschi M, Limacher PA, Hutter J, Lüthi HP. A scheme for the evaluation of electron delocalization and conjugation efficiency in linearly π-conjugated systems. J Chem Theory Comput. 2009;5(3):506–14.

    CAS  PubMed  Google Scholar 

  29. Madhu S, Sharma DK, Basu SK, Jadhav S, Chowdhury A, Ravikanth M. Sensing Hg (II) in vitro and in vivo using a benzimidazole substituted BODIPY. Inorg Chem. 2013;52(19):11136–45.

    CAS  PubMed  Google Scholar 

  30. Zhang X, Xiao Y, Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem. 2008;120(42):8145–9.

    Google Scholar 

  31. Devaraj NK, Weissleder R. Biomedical applications of tetrazine cycloadditions. Accounts Chem Res. 2011;44(9):816–27.

    CAS  Google Scholar 

  32. Huang X, Meng J, Dong Y, Cheng Y, Zhu C. Polymer-based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3] thiadiazole moieties for Hg2+ detection. J Polym Sci. Part A: Polymer Chemistry. 2010;48(5):997–1006.

    CAS  Google Scholar 

  33. Culzoni MJ, Muñoz DL, Machuca A, Goicoechea HC, Brasca R, Babiano R. Photoinduced electron transfer fluorometric Hg (II) chemosensor based on a BODIPY armed with a tetrapod receptor. Talanta. 2013;117:288–96.

    CAS  PubMed  Google Scholar 

  34. Wei G, Jiang Y, Wang F. A novel AIEE polymer sensor for detection of Hg2+ and Ag+ in aqueous solution. J Photochem. 2018;358:38–43.

    CAS  Google Scholar 

  35. Ngoy BP, Molupe N, Harris J, Fomo G, Mack J, Nyokong T. Photophysical studies of 2,6-dibrominated BODIPY dyes substituted with 4-benzyloxystyryl substituents. J Porphyr Phthalocya. 2017;21(04–06):431–8.

    CAS  Google Scholar 

  36. Kim H, Kim K, Son S, Choi JY, Lee K, Kim B, et al. 18 F-labeled BODIPY dye: a potential prosthetic group for brain hybrid PET/optical imaging agents. ACS Chem Neurosci. 2019;10(3):1445–51.

    CAS  PubMed  Google Scholar 

  37. Joshi M, Delgado Y, Guerra P, Lai H, Almirall JR. Detection of odor signatures of smokeless powders using solid phase microextraction coupled to an ion mobility spectrometer. Forensic Sci Int. 2009;188(1–3):112–8.

    CAS  PubMed  Google Scholar 

  38. Harner T, Farrar NJ, Shoeib M, Jones KC, Gobas FAPC. Characterization of polymer-coated glass as a passive air sampler for persistent organic pollutants. Environ Sci Technol. 2003;37(11):2486–93.

    CAS  PubMed  Google Scholar 

  39. Gholami MD, Manzhos S, Sonar P, Ayoko GA, Izake EL. Dual chemosensor for the rapid detection of mercury (ii) pollution and biothiols. Analyst. 2019;144(16):4908–16.

    CAS  PubMed  Google Scholar 

  40. Haldar U, Lee H. BODIPY-derived polymeric chemosensor appended with thiosemicarbazone units for the simultaneous detection and separation of Hg (II) ions in pure aqueous media. Acs Appl Mater Inter. 2019;11(14):13685–93.

    CAS  Google Scholar 

  41. Shellaiah M, Rajan YC, Balu P, Murugan A. A pyrene based Schiff base probe for selective fluorescence turn-on detection of Hg2+ ions with live cell application. New J Chem. 2015;39(4):2523–31.

    CAS  Google Scholar 

  42. Zhang XP, Wang TT, Yuan ZH, Zhou Y, Yang YS, Zhu HL. A quinoxalinone-derivated fluorescence sensor with optimized solubility for cysteine detection and biological imaging. Dyes Pigments. 2019;107716.

  43. He G, Hua X, Yang N, Li L, Xu J, Yang L, et al. Synthesis and application of a “turn on” fluorescent probe for glutathione based on a copper complex of coumarin hydrazide Schiff base derivative. Bioorg Chem. 2019;103176.

  44. Dai Y, Yao K, Fu J, Xue K, Yang L, Xu K. A novel 2-(hydroxymethyl) quinolin-8-ol-based selective and sensitive fluorescence probe for Cd2+ ion in water and living cells. Sensors Actuators B Chem. 2017;251:877–84.

    CAS  Google Scholar 

  45. Deng S, Liu H, Qi C, Yang A, Li Z. Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone. J Incl Phenom Macro. 2018;90(3–4):321–9.

    CAS  Google Scholar 

  46. More PA, Shankarling GS. Reversible ‘turn off’ fluorescence response of Cu2+ ions towards 2-pyridyl quinoline based chemosensor with visible colour change. Sensors Actuators B Chem. 2017;241:552–9.

    CAS  Google Scholar 

  47. Vigneresse J. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation. Lithos. 2012;153:154–64.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (NSFC, grant no. 41573106) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Sun or Xinjian Cheng.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 4081 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Sun, Q., Zhao, Q. et al. Highly sensitive and selective fluorescent monomer/polymer probes for Hg2+ and Ag+ recognition and imaging of Hg2+ in living cells. Anal Bioanal Chem 412, 881–894 (2020). https://doi.org/10.1007/s00216-019-02297-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02297-w

Keywords

Navigation