Skip to main content
Log in

One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Novel carbon dots (CDs) were synthesized by a one-pot hydrothermal approach using ampicillin as a precursor, and the as-prepared CDs exhibited a high quantum yield (23%). The CDs were found to possess abundant surface functional groups, thus providing good permeability to the cell, and the antibacterial activity of CDs was evaluated. S. aureus and L. monocytogenes were selected as model bacteria, and our results showed that the CDs exhibited antibacterial activity against S. aureus and L. monocytogenes under visible light illumination, even at low concentrations. The antibacterial mechanism is believed to be the production of reactive oxygen species (ROS) from CDs under visible light irradiation, which attacked the bacterial cell membranes, resulting in the death of the bacteria. In addition, because of the multicolor fluorescence properties of CDs, staining of S. aureus and L. monocytogenes obtained multicolor fluorescence images at different excitation wavelengths. Based on these results, CDs are a promising candidate material for biological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng XK, Wang ZY, Meng N, McCarthy DT, Deletic A, Pan JH, et al. Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection. Appl Catal B Environ. 2017;202:33–41.

    CAS  Google Scholar 

  2. Wang WJ, Li GY, Xia DH, An TC, Zhao HJ, Wong PK. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ Sci Nano. 2017;4(4):782–99.

    CAS  Google Scholar 

  3. Li H, Huang J, Song YX, Zhang ML, Wang HB, Lu F, et al. Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater Interfaces. 2018;10(32):26936–46.

    CAS  PubMed  Google Scholar 

  4. Liu WD, Liu JL, Triplett L, Leach JE, Wang GL. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol. 2014;52:213–41.

    CAS  PubMed  Google Scholar 

  5. Moradi M, Kalantary RR, Esrafili A, Jafari AJ, Gholami M. Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH. J Mol Liq. 2017;248:880–9.

    CAS  Google Scholar 

  6. Wang R, Wang X, Sun Y. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors Actuators B Chem. 2017;241:73–9.

    CAS  Google Scholar 

  7. Wang H, Liu S, Xie Y, Bi J, Li Y, Song Y, et al. Facile one-step synthesis of highly luminescent N-doped carbon dots as efficient fluorescence probe for chromium (VI) detection based on inner filter effect. New J Chem. 2018;42(5):3729–35.

    CAS  Google Scholar 

  8. Dang DK, Chandrasekaran S, Ngo YLT, Chung JS, Kim EJ, Hur SH. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sensors Actuators B Chem. 2018;255:3284–91.

    CAS  Google Scholar 

  9. Naaz S, Poddar S, Bayen SP, Mondal MK, Roy D, Mondal SK, et al. Tenfold enhancement of fluorescence quantum yield of water soluble silver nanoclusters for nano-molar level glucose sensing and precise determination of blood glucose level. Sensors Actuators B Chem. 2018;255:332–40.

    CAS  Google Scholar 

  10. Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces. 2018;170:347–54.

    CAS  PubMed  Google Scholar 

  11. Zhang LY, Wang DH, Huang HW, Liu LF, Zhou Y, Xia XD, et al. Preparation of gold-carbon dots and Ratiometric fluorescence cellular imaging. ACS Appl Mater Interfaces. 2016;8(10):6646–55.

    CAS  PubMed  Google Scholar 

  12. Guo Y, Cao F, Li Y. Solid phase synthesis of nitrogen and phosphor co-doped carbon quantum dots for sensing Fe3+ and the enhanced photocatalytic degradation of dyes. Sensors Actuators B Chem. 2017;255:1105–11.

    Google Scholar 

  13. Jhonsi MA, Ananth DA, Nambirajan G, Sivasudha T, Yamini R, Bera S, et al. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots. Spectroc Acta A Mol Biomol Spectrosc. 2018;196:295–302.

    CAS  Google Scholar 

  14. Chen J, Liu J, Li J, Xu L, Qiao Y. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging. J Colloid Interface Sci. 2017;485:167–74.

    PubMed  Google Scholar 

  15. Wang D, Wang X, Guo Y, Liu W, Qin W. Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues. RSC Adv. 2014;4(93):51658–65.

    CAS  Google Scholar 

  16. Du J, Yun Z, Chen J, Ping Z, Gao L, Wang M, et al. Difunctional cu-doped carbon dots: catalytic activity and fluorescence indication for the reduction reaction of p-nitrophenol. RSC Adv. 2017;7(54):33929–36.

    CAS  Google Scholar 

  17. Meng A, Xu QH, Zhao K, Li ZJ, Liang J, Li QD. A highly selective and sensitive "on-off-on" fluorescent probe for detecting hg(II) based on au/N-doped carbon quantum dots. Sensors Actuators B Chem. 2018;255:657–65.

    CAS  Google Scholar 

  18. Kung ML, Lin PY, Hsieh CW, Tai MH, Wu DC, Kuo CH, et al. Bifunctional peppermint oil nanoparticles for antibacterial activity and fluorescence imaging. ACS Sustain Chem Eng. 2014;2(7):1769–75.

    CAS  Google Scholar 

  19. Das P, Ganguly S, Bose M, Mondal S, Choudhary S, Gangopadhyay S, et al. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater Sci Eng C. 2018;88:115–29.

    CAS  Google Scholar 

  20. Meziani MJ, Dong X, Zhu L, Jones LP, Lecroy GE, Yang F, et al. Visible-light-activated bactericidal functions of carbon "quantum" dots. ACS Appl Mater Interfaces. 2016;8(17):10761–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Travlou NA, Giannakoudakis DA, Algarra M, Labella AM, Rodriguez-Castellon E, Bandosz TJ. S- and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon. 2018;135:104–11.

    CAS  Google Scholar 

  22. Venkateswarlu S, Viswanath B, Reddy AS, Yoon M. Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sensors Actuators B Chem. 2017;258:172–83.

    Google Scholar 

  23. Fang BY, Li C, Song YY, Tan F, Cao YC, Zhao YD. Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells. Biosens Bioelectron. 2017;100:41–8.

    PubMed  Google Scholar 

  24. Ren G, Zhang Q, Li S, Fu S, Chai F, Wang C, et al. One pot synthesis of highly fluorescent N doped C-dots and used as fluorescent probe detection for Hg2+ and Ag+ in aqueous solution. Sensors Actuators B Chem. 2017;243:244–53.

    CAS  Google Scholar 

  25. Gu D, Shang S, Yu Q, Jie S. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci. 2016;390:38–42.

    CAS  Google Scholar 

  26. Tabaraki R, Sadeghinejad N. Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off-on fluorescent sensor for mercury (II) and iodide in environmental samples. Ecotoxicol Environ Saf. 2018;153:101–6.

    CAS  PubMed  Google Scholar 

  27. Wang Z, Fan Z. Cu(2+) modulated nitrogen-doped grapheme quantum dots as a turn-off/on fluorescence sensor for the selective detection of histidine in biological fluid. Spectroc Acta A Mol Biomol Spectrosc. 2017;189:195–201.

    Google Scholar 

  28. Xu H, Yang X, Li G, Zhao C, Liao X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem. 2015;63(30):6707–14.

    CAS  PubMed  Google Scholar 

  29. Lu JH, Fu YQ, Wang DM, Lu CL. A facile synthesis of thermo-responsive copolymer stabilized fluorescent silver nanoclusters and their application in pH sensing. Sensors Actuators B Chem. 2018;254:996–1004.

    CAS  Google Scholar 

  30. Ganganboina AB, Chowdhury AD, Doong RA. N-doped graphene quantum dots-decorated V2O5 Nanosheet for fluorescence turn off-on detection of cysteine. ACS Appl Mater Interfaces. 2018;10(1):614–24.

    CAS  PubMed  Google Scholar 

  31. Ankireddy SR, Kim J. Highly selective and sensitive detection of calcium (II) ions in human serum using novel fluorescent carbon dots. Sensors Actuators B Chem. 2018;255:3425–33.

    CAS  Google Scholar 

  32. Borse V, Thakur M, Sengupta S, Srivastava R. N-doped multi-fluorescent carbon dots for ‘turn off-on’ silver-biothiol dual sensing and mammalian cell imaging application. Sensors Actuators B Chem. 2017;248:481–92.

    CAS  Google Scholar 

  33. Xu JW, Gao ZD, Han K, Liu Y, Song YY. Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. ACS Appl Mater Interfaces. 2014;6(17):15122–31.

    CAS  PubMed  Google Scholar 

  34. Yang JJ, Gao G, Zhang XD, Ma YH, Chen XK, Wu FG. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast gram-type identification and selective gram-positive bacterial inactivation. Carbon. 2019;146:827–39.

    CAS  Google Scholar 

  35. Zhao CF, Wang XW, Wu LN, Wu W, Zheng YJ, Lin LQ, et al. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf B Biointerfaces. 2019;179:17–27.

    CAS  PubMed  Google Scholar 

  36. Bunz UH, Han J, Cheng H, Wang B, Braun M, Fan X, et al. Polymer/peptide complex-based sensor array discriminates bacteria in urine. Angew Chem. 2017;56:15246–51.

    Google Scholar 

  37. Shariati MR, Samadi-Maybodi A, Colagar AH. Dual Cocatalysts Loaded Reverse Type-I Core/Shell Quantum Dots for Photocatalytic Antibacterial Applications. J Mater Chem A. 2018;6(41).

    CAS  Google Scholar 

  38. Karthik K, Revathi V, Tatarchuk T. Microwave-assisted green synthesis of SnO2 nanoparticles and their optical and photocatalytic properties. Mol Cryst Liq Cryst. 2018;671:17–23.

    CAS  Google Scholar 

  39. Karthik K, Vijayalakshmi S, Phuruangrat A, Revathi V, Science UVJJoC. Multifunctional applications of microwave-assisted biogenic TiO2 nanoparticles. J Clust Sci. 2019;30:965–72.

    CAS  Google Scholar 

  40. Karthik K, Naik MM, Shashank M, Vinuth M, Revathi V. Microwave-assisted ZrO2 nanoparticles and its photocatalytic and antibacterial studies. J Clust Sci. 2019;30:311–8.

    CAS  Google Scholar 

  41. Karthik K, Revathi V, Crystals TTJM, Crystals L. Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol Cryst Liq Cryst. 2019;673(1):70–80.

    Google Scholar 

  42. Nagaraju G, Karthik K, Shashank M. Ultrasound-assisted Ta2O5 nanoparticles and their photocatalytic and biological applications. Microchem J. 2019;147:749–54.

    CAS  Google Scholar 

  43. Revathi V, Karthik KJCDC. Physico-chemical properties and antibacterial activity of hexakis (thiocarbamide) nickel(II) nitrate single crystal. Chemical Data Collections. 2019;21:100229.

    Google Scholar 

  44. Wang R, Kong X, Zhang W, Zhu W, Huang L, Wang J, et al. Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures. Appl Catal B Environ. 2017;225:228–37.

    Google Scholar 

  45. Yu HL, Xu X, Ma APY, Liu F, Ng AMC, Shen Z, et al. Toxicity of ZnO and TiO2 to Escherichia coli cells. Sci Rep. 2016;6:35243.

    Google Scholar 

  46. Hua XW, Bao YW, Wang HY, Chen Z, Wu FG. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale. 2017;9(6):2150–61.

    CAS  PubMed  Google Scholar 

  47. Yang J, Zhang X, Ma YH, Gao G, Chen X, Jia HR, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces. 2016;8(47):32170–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was strongly supported by the Analysis and Testing Foundation of Kunming University of Science and Technology (2018 M20172118081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Yang, D., Wan, Y. et al. One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation. Anal Bioanal Chem 412, 871–880 (2020). https://doi.org/10.1007/s00216-019-02293-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02293-0

Keywords

Navigation