Skip to main content
Log in

Novel approach for the synthesis of a neutral and covalently bound capillary coating for capillary electrophoresis-mass spectrometry made from highly polar and pH-persistent N-acryloylamido ethoxyethanol

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Statically adsorbed or covalently coupled capillary coatings are of crucial importance in capillary electrophoresis-mass spectrometry for the separation of peptides and proteins. So far, published coating strategies and commercially available coated capillaries have a limited pH-stability so that the analysis at strongly acidic pH is limited, or harsh rinsing procedures for biological sample analysis cannot be applied. We here present a capillary coating based on Si-C linkages to N-acryloylamido ethoxyethanol (AAEE) with a new synthetic strategy including LiAlH4 surface reaction. We optimized the coating method with emphasis on stability and reproducibility applying harsh rinsing procedures (strong acid, strong base and organic solvent), using the electroosmotic mobility and separation efficiency of tryptic peptides as performance measure. Complete synthesis is performed in less than 2 days for up to 8 capillaries in parallel of more than 16 m total length. Intra- and inter-batch reproducibility were determined regarding electroosmotic mobility, separation efficiency and migration time precision in CE-MS separations of tryptically digested bovine serum albumin. Coating stability towards rinsing with strong acid (1 mol/L HCl), organic solvent (acetonitrile) and strong base (1 mol/L NaOH) was investigated. Outstanding performance was found for single capillaries. However, inter-capillary reproducibility is discussed critically. The new coating was successfully applied for reproducible CE-MS separation of large proteins in diluted serum, medium-sized peptides and small and highly charged polyamines in fish egg extracts using a very acidic background electrolyte containing 0.75 mol/L acetic acid and 0.25 mol/L formic acid (pH 2.2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Katayama H, Ishihama Y, Asakawa N. Stable cationic capillary coating with successive multiple ionic polymer layers for capillary electrophoresis. Anal Chem. 1998;70(24):5272–7.

    CAS  PubMed  Google Scholar 

  2. Chiari M, Nesi M, Sandoval JE, Pesek JJ. Capillary electrophoretic separation of proteins using stable, hydrophilic poly (acryloylaminoethoxyethanol)-coated columns. J Chromatogr A. 1995;717(1):1–13.

    CAS  Google Scholar 

  3. Chiu RW, Jimenez JC, Monnig CA. High molecular weight polyarginine as a capillary coating for separation of cationic proteins by capillary electrophoresis. Anal Chim Acta. 1995;307:193–201.

    CAS  Google Scholar 

  4. Chen F-TA. Rapid protein analysis by capillary electrophoresis. J Chromatogr A. 1991;559(1–2):445–53.

    CAS  Google Scholar 

  5. Grossman PD, Colburn JC. Capillary electrophoresis: theory and practice. Foster City, CA, USA: Academic Press; 2012.

    Google Scholar 

  6. Haselberg R, de Jong GJ, Somsen GW. Capillary electrophoresis-mass spectrometry of intact basic proteins using Polybrene-dextran sulfate-Polybrene-coated capillaries: system optimization and performance. Anal Chim Acta. 2010;678(1):128–34.

    CAS  PubMed  Google Scholar 

  7. Belder D, Deege A, Husmann H, Kohler F, Ludwig M. Cross-linked poly (vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis. Electrophoresis. 2001;22(17):3813–8.

    CAS  PubMed  Google Scholar 

  8. Pei L, Lucy CA. Insight into the stability of poly (diallydimethylammoniumchloride) and polybrene poly cationic coatings in capillary electrophoresis. J Chromatogr A. 2014;1365:226–33.

    CAS  PubMed  Google Scholar 

  9. Wang Y, Dubin PL. Capillary modification by noncovalent Polycation adsorption: effects of polymer molecular weight and adsorption ionic strength. Anal Chem. 1999;71(16):3463–8.

    CAS  Google Scholar 

  10. Nehmé R, Perrin C, Cottet H, Blanchin MD, Fabre H. Influence of polyelectrolyte coating conditions on capillary coating stability and separation efficiency in capillary electrophoresis. Electrophoresis. 2008;29(14):3013–23.

    PubMed  Google Scholar 

  11. Neusüß C, Demelbauer U, Pelzing M. Glycoform characterization of intact erythropoietin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis. 2005;26(7–8):1442–50.

    PubMed  Google Scholar 

  12. Kelly JF, Locke SJ, Ramaley L, Thibault P. Development of electrophoretic conditions for the characterization of protein glycoforms by capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A. 1996;720(1–2):409–27.

    CAS  PubMed  Google Scholar 

  13. Moini M. Metal displacement and stoichiometry of protein-metal complexes under native conditions using capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(18):2730–4.

    CAS  PubMed  Google Scholar 

  14. Haselberg R, de Jong GJ, Somsen GW. Capillary electrophoresis–mass spectrometry for the analysis of intact proteins 2007–2010. Electrophoresis. 2011;32(1):66–82.

    CAS  PubMed  Google Scholar 

  15. Haselberg R, Ratnayake CK, de Jong GJ, Somsen GW. Performance of a sheathless porous tip sprayer for capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins. J Chromatogr A. 2010;1217(48):7605–11.

    CAS  PubMed  Google Scholar 

  16. Lucy CA, MacDonald AM, Gulcev MD. Non-covalent capillary coatings for protein separations in capillary electrophoresis. J Chromatogr A. 2008;1184(1):81–105.

    CAS  PubMed  Google Scholar 

  17. Ehmann T, Bächmann K, Fabry L, Rüfer H, Serwe M, Ross G, et al. Capillary preconditioning for analysis of anions using indirect UV detection in capillary zone electrophoresis: systematic investigation of alkaline and acid prerinsing techniques by designed experiments. J Chromatogr A. 1998;816(2):261–75.

    CAS  Google Scholar 

  18. Yassine MM, Lucy CA. Factors affecting the temporal stability of Semipermanent bilayer coatings in capillary electrophoresis prepared using double-chained surfactants. Anal Chem. 2004;76(11):2983–90.

    CAS  PubMed  Google Scholar 

  19. Horvath J, Dolník V. Polymer wall coatings for capillary electrophoresis. Electrophoresis. 2001;22(4):644–55.

    CAS  PubMed  Google Scholar 

  20. Righetti PG, Chiari M, Nesi M, Caglio S. Towards new formulations for polyacrylamide matrices, as investigated by capillary zone electrophoresis. J Chromatogr A. 1993;638(2):165–78.

    CAS  Google Scholar 

  21. Chiari M, Micheletti C, Nesi M, Fazio M, Righetti PG. Towards new formulations for polyacrylamide matrices: N-acryloylaminoethoxyethanol, a novel monomer combining high hydrophilicity with extreme hydrolytic stability. Electrophoresis. 1994;15(1):177–86.

    CAS  PubMed  Google Scholar 

  22. Chu CH, Jonsson E, Auvinen M, Pesek JJ, Sandoval JE. A new approach for the preparation of a hydride-modified substrate used as an intermediate in the synthesis of surface-bonded materials. Anal Chem. 1993;65(6):808–16.

    CAS  Google Scholar 

  23. Morterra C, Low MJD. Reactive silica. I. Formation of a reactive silica by the thermal collapse of the methoxy groups of methylated Aerosil. J Phys Chem. 1969;73(2):321–6.

    CAS  Google Scholar 

  24. Morterra C, Low MJD. Reactive silica. II. Nature of the surface silicon hydrides produced by the chemisorption of hydrogen. J Phys Chem. 1969;73(2):327–33.

    CAS  Google Scholar 

  25. Zhuravlev LT. The surface chemistry of amorphous silica. Zhuravlev model Colloid Surface A. 2000;173(1–3):1–38.

    CAS  Google Scholar 

  26. Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. New York, NY, USA: Academic press; 2013.

    Google Scholar 

  27. Sandoval JE, Pesek JJ. Synthesis and characterization of a hydride-modified porous silica material as an intermediate in the preparation of chemically bonded chromatographic stationary phases. Anal Chem. 1989;61(18):2067–75.

    CAS  Google Scholar 

  28. Ebsworth E, MacDiarmid A. Organometallic compounds of the group IV elements. New York, NY: The Bond to CarbonMarcel Dekker; 1968.

    Google Scholar 

  29. Slinyakova I, Budkevich G, Neimark IE. Hydrophobic hydrosiliceous adsorbent with the Si-H bond (hydridopolysiloxane xerogel). Kolloidnyi Zhurnal. 1965;27:758–64.

    CAS  Google Scholar 

  30. Ashby BA. Addition reaction. Google Patents; 1964.

  31. Locke DC, Schmermund JT, Banner B. Bonded stationary phases for chromatography. Anal Chem. 1972;44(1):90–2.

    Google Scholar 

  32. Pesek JJ, Swedberg SA. Allyl-bonde stationary phase as possible intermediate in the synthesis of novel high-performance liquid chromatographic phases. J Chromatogr A. 1986;361:83–92.

    CAS  Google Scholar 

  33. Saunders D, Barford R, Magidman P, Olszewski L, Rothbart H. Preparation and properties of a sulfobenzylsilica cation exchanger for liquid chromatography. Anal Chem. 1974;46(7):834–8.

    CAS  Google Scholar 

  34. Pawlenko S. Organosilicon chemistry. New York, NY, USA: Walter de Gruyter; 2011.

    Google Scholar 

  35. Sandoval JE, Pesek JJ. Hydrolytically stable bonded chromatographic phases prepared through hydrosilylation of olefins on a hydride-modified silica intermediate. Anal Chem. 1991;63(22):2634–41.

    CAS  Google Scholar 

  36. Nakatani M, Shibukawa A, Nakagawa T. Sodium dodecyl sulfate-polyacrylamide solution-filled capillary electrophoresis of proteins using stable linear polyacrylamide-coated capillary. Biol Pharm Bull. 1993;16(12):1185–8.

    CAS  PubMed  Google Scholar 

  37. Nakatani M, Skibukawa A, Nakagawa T. Preparation and characterization of a stable polyacrylamide sieving matrix-filled capillary for high-performance capillary electrophoresis. J Chromatogr A. 1994;661(1–2):315–21.

    CAS  PubMed  Google Scholar 

  38. Nakatani M, Shibukawa A, Nakagawa T. Chemical stability of polyacrylamide-coating on fused silica capillary. Electrophoresis. 1995;16(1):1451–6.

    CAS  PubMed  Google Scholar 

  39. Nakatani M, Shibukawa A, Nakagawa T. High-performance capillary electrophoresis of SDS-proteins using pullulan solution as separation matrix. J Chromatogr A. 1994;672(1–2):213–8.

    CAS  PubMed  Google Scholar 

  40. Williams BA, Vigh G. Fast, accurate mobility determination method for capillary electrophoresis. Anal Chem. 1996;68(7):1174–80.

    CAS  PubMed  Google Scholar 

  41. Williams BA, Vigh G. Determination of accurate Electroosmotic mobility and Analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis. Anal Chem. 1997;69(21):4445–51.

    CAS  PubMed  Google Scholar 

  42. Pattky M, Huhn C. Advantages and limitations of a new cationic coating inducing a slow electroosmotic flow for CE-MS peptide analysis: a comparative study with commercial coatings. Anal Bioanal Chem. 2013;405(1):225–37.

    CAS  PubMed  Google Scholar 

  43. Righetti PG, Gelfi C, Sebastiano R, Citterio A. Surfing silica surfaces superciliously. J Chromatogr A. 2004;1053(1–2):15–26.

    CAS  PubMed  Google Scholar 

  44. Frohnhöfer HG, Geiger-Rudolph S, Pattky M, Meixner M, Huhn C, Maischein H-M, et al. Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biol Open. 2016:bio. 018721.

  45. Xu L, Dong X-Y, Sun Y. Novel poly (vinyl alcohol)-based column coating for capillary electrophoresis of proteins. Biochem Eng J. 2010;53(1):137–42.

    CAS  Google Scholar 

  46. Bodnar J, Hajba L, Guttman A. A fully automated linear polyacrylamide coating and regeneration method for capillary electrophoresis of proteins. Electrophoresis. 2016;37(23–24):3154–9.

    CAS  PubMed  Google Scholar 

  47. Catai JR, Toraño JS, de Jong GJ, Somsen GW. Capillary electrophoresis–mass spectrometry of proteins at medium pH using bilayer-coated capillaries. Analyst. 2007;132(1):75–81.

    CAS  PubMed  Google Scholar 

  48. Kele M, Guiochon G. Repeatability and reproducibility of retention data and band profiles on reversed-phase liquid chromatography columns: III. Results obtained with Kromasil C18 columns. J Chromatogr A. 1999;855(2):423–53.

    CAS  PubMed  Google Scholar 

  49. Cifuentes A, Diez-Masa JC, Fritz J, Anselmetti D, Bruno AE. Polyacrylamide-coated capillaries probed by atomic force microscopy: correlation between surface topography and electrophoretic performance. Anal Chem. 1998;70(16):3458–62.

    CAS  Google Scholar 

  50. De Freitas J, Player M. Ultrahigh precision measurements of optical heterogeneity of high quality fused silica. Appl Phys Lett. 1995;66(26):3552–4.

    Google Scholar 

  51. Cobb KA, Dolnik V, Novotny M. Electrophoretic separations of proteins in capillaries with hydrolytically-stable surface structures. Anal Chem. 1990;62(22):2478–83.

    CAS  PubMed  Google Scholar 

  52. Unger K, Berg K, Nyamah D, Lothe T. Herstellung oberflächenmodifizierter Adsorbentien. Colloid Polym Sci. 1974;252(4):317–21.

    CAS  Google Scholar 

  53. Dove PM, Han N, Wallace AF, De Yoreo JJ. Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc Natl Acad Sci. 2008;105(29):9903–8.

    CAS  PubMed  Google Scholar 

  54. Eckhardt A, Mikšík I, Deyl Z, Charvátová J. Separation of low-molecular mass peptides by capillary electrophoresis with the use of alkylamines as dynamic coating agents at low pH. J Chromatogr A. 2004;1051(1):111–7.

    CAS  PubMed  Google Scholar 

  55. Du M, Flanigan V, Ma Y. Simultaneous determination of polyamines and catecholamines in PC-12 tumor cell extracts by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2004;25(10–11):1496–502.

    CAS  PubMed  Google Scholar 

  56. Lange J, Thomas K, Wittmann C. Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. J Chromatogr B. 2002;779(2):229–39.

    CAS  Google Scholar 

  57. Simo C, Moreno-Arribas MV, Cifuentes A. Ion-trap versus time-of-flight mass spectrometry coupled to capillary electrophoresis to analyze biogenic amines in wine. J Chromatogr A. 2008;1195(1–2):150–6.

    CAS  PubMed  Google Scholar 

  58. Eriksson JHC, Mol R, Somsen GW, Hinrichs WLJ, Frijlink HW. Jong GJd. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins. Electrophoresis. 2004;25(1):43–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Uwe Irion, Max Planck Institute for Developmental Biology, Tübingen, for providing the fish egg samples and discussion. We want to thank the workgroup of Prof. Hermann A. Mayer (Eberhard Karls Universität Tübingen), especially Dipl. Chem. Thomasz Mistal, M. Sc. Dennis M. Meisel and Dr. Farhad Jafarli, for supplying us with dry solvents, support and discussion. Also, we would like to thank M. Sc. Sandra Köhn, M. Sc. Ronja Jordan, Sarah Köhn and B. Sc. Jacqueline Kieler who contributed during internships to early phases of this work.

Funding

This work was funded by the Karl & Anna Buck Stiftung and the Excellence Initiative, a jointly funded program of the German Federal and State governments, organized by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Huhn.

Ethics declarations

Informed consent for blood donation was obtained.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meixner, M., Pattky, M. & Huhn, C. Novel approach for the synthesis of a neutral and covalently bound capillary coating for capillary electrophoresis-mass spectrometry made from highly polar and pH-persistent N-acryloylamido ethoxyethanol. Anal Bioanal Chem 412, 561–575 (2020). https://doi.org/10.1007/s00216-019-02286-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02286-z

Keywords

Navigation