Skip to main content
Log in

Electrostatically mediated layer-by-layer assembly of nitrogen-doped graphene/PDDA/gold nanoparticle composites for electrochemical detection of uric acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A layer-by-layer self-assembled nitrogen-doped graphene/PDDA/gold nanoparticle (NDG/PDDA/GNP) composite was described. Citrate-stabilizing gold nanoparticle colloids (GNPs) were electrostatically adsorbed onto NDG nanosheets using a cationic polyelectrolyte, polydiallyldimethylammonium (PDDA), as the linker, thereby creating a high-performance electrochemical interface. The morphology and chemical composition were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, infrared spectroscopy, and Raman spectroscopy. Analytical application was manifested by electrochemical sensing of uric acid (UA), a biomarker involved with a variety of clinical diseases. The prepared nanocomposite exhibited noticeable electroactivity to uric acid oxidation and can give effective peak separation with ascorbic acid and dopamine. Additionally, the nanocomposite practically averted from other potentially interferents including glucose, urea, and serotonin, thus allowing selective voltammetric detection of UA in the biological matrix. Under the optimal condition, peak currents measured by differential pulse voltammetry were proportional to UA concentrations in the range of 0.5~100 μM (R2 = 0.998), with the detection limit of 53 nM. The NDG/PDDA/GNP nanocomposite as presented herein holds potential for aiding the diagnosis of UA-associated diseases and should be a new opportunity for biochemical analysis and biosensing applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrikou I, Tsioufis C, Dimitriadis K, Konstantinidis D, Kasiakogias A, Kouremeti M, et al. Uric acid as an independent predictor of coronary artery disease in essential hypertension: data from an 8-year-follow-up study. Clin Exp Pharmacol Physiol. 2018;45:866–9.

    CAS  PubMed  Google Scholar 

  2. Yu Y, Chen Z, Zhang B, Li X, Pan J. Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode. Talanta. 2013;112:31–6.

    CAS  PubMed  Google Scholar 

  3. Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta. 2018;484:150–63.

    CAS  PubMed  Google Scholar 

  4. He YF, Qi F, Niu XH, Zhang WC, Zhang XF, Pan JM. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal Chim Acta. 2018;1021:113–20.

    CAS  PubMed  Google Scholar 

  5. Saqib M, Qi LM, Hui P, Nsabimana A, Halawa MI, Zhang W, et al. Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2+. Biosens Bioelectron. 2018;99:519–24.

    CAS  PubMed  Google Scholar 

  6. YunYang W, Lei YJ, Xu T, Zhou MZ, Xia QL. Hao, determination of trace uric acid in serum using porous graphitic carbon nitride (g-C3N4) as a fluorescent probe. Microchim Acta. 2018. https://doi.org/10.1007/s00604-017-2533-4.

  7. Hamedpour V, Postma GJ, van den Heuvel E, Jansen JJ, Suzuki K, Citterio D. Chemometrics-assisted microfluidic paper-based analytical device for the determination of uric acid by silver nanoparticle plasmon resonance. Anal Bioanal Chem. 2018;410:2305–13.

    CAS  PubMed  Google Scholar 

  8. Rodriguez A, Maria Gomila R, Martorell G, Costa-Bauza A, Grases F. Quantification of xanthine- and uric acid-related compounds in urine using a "dilute-and-shoot" technique coupling ultra-high-performance liquid chromatography and high-resolution Orbitrap mass spectrometry. J Chromatogr B. 2017;1067:53–60.

    CAS  Google Scholar 

  9. Tao Y, Zhang X, Wang J, Wang X, Yang N. Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence. J Electroanal Chem. 2012;674:65–70.

    CAS  Google Scholar 

  10. Reddy YVM, Sravani B, Agarwal S, Gupta VK, Madhavi G. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode. J Electroanal Chem. 2018;820:168–75.

    Google Scholar 

  11. Jindal K, Tomar M, Gupta V. A novel low-powered uric acid biosensor based on arrayed p - n junction heterostructures of ZnO thin film and CuO microclusters. Sensors Actuators B. 2017;253:566–75.

    CAS  Google Scholar 

  12. Sun ZM, Fu HY, Deng L, Wang JX. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal Chim Acta. 2013;761:84–91.

    CAS  PubMed  Google Scholar 

  13. Peng BG, Cui JW, Wang Y, Liu JQ, Zheng HM, Jin L, et al. CeO2-x/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale. 2018;10:1939–45.

    CAS  PubMed  Google Scholar 

  14. Tremey E, Stines-Chaumeil C, Gounel S, Mano N. Designing an O2-insensitive glucose oxidase for improved electrochemical applications. Chemelectrochem. 2017;4:2520–6.

    CAS  Google Scholar 

  15. Zen JM, Hsu CT, Hsu YL, Sue JW, Conte ED. Voltammetric peak separation of dopamine from uric acid in the presence of ascorbic acid at greater than ambient solution temperatures. Anal Chem. 2004;76:4251–5.

    CAS  PubMed  Google Scholar 

  16. Ganjali MR, Beitollahi H, Zaimbashi R, Tajik S, Rezapour M, Larijani B. Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. Int J Electrochem Sci. 2018;13:2519–29.

    CAS  Google Scholar 

  17. Beitollahi H, Mohammadi S. Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater Sci Eng C. 2013;33:3214–9.

    CAS  Google Scholar 

  18. Beitollahi H, Karimi-Maleh H, Khabazzadeh H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydroquinazolinyl)-N '-phenyl-hydrazinecarbothioamide. Anal Chem. 2008;80:9848–51.

    CAS  PubMed  Google Scholar 

  19. Beitollahi H, Dourandish Z, Tajik S, Ganjali MR, Norouzi P, Faridbod F. Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J Rare Earths. 2018;36:750–7.

    CAS  Google Scholar 

  20. Vulcu A, Biris AR, Borodi G, Berghian-Grosan C. Interference of ascorbic and uric acids on dopamine behavior at graphene composite surface: An electrochemical, spectroscopic and theoretical approach. Electrochim Acta. 2018;282:822–34.

    CAS  Google Scholar 

  21. Babu RS, Prabhu P, Narayanan SS. Selective electrooxidation of uric acid in presence of ascorbic acid at a room temperature ionic liquid/nickel hexacyanoferarrate nanoparticles composite electrode. Colloids Surf B-Biointerfaces. 2011;88:755–63.

    CAS  PubMed  Google Scholar 

  22. Nagles E, Garcia-Beltran O, Calderon JA. Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids. Electrochim Acta. 2017;258:512–23.

    CAS  Google Scholar 

  23. Ahammad AJS, Islam T, Hasan MM, Mozumder MNI, Karim R, Odhikari N, et al. Reduced graphene oxide screen-printed FTO as highly sensitive electrodes for simultaneous determination of dopamine and uric acid. J Electrochem Soc. 2018;165:B174–83.

    CAS  Google Scholar 

  24. Li YC, Jiang YY, Song YY, Li YH, Li SX. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta. 2018. https://doi.org/10.1007/s00604-018-2922-3.

  25. Xiong C, Zhang TF, Kong WY, Zhang ZX, Qu H, Chen W, et al. ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens Bioelectron. 2018;101:21–8.

    CAS  PubMed  Google Scholar 

  26. Lei R, Ni HW, Chen RS, Gu HZ, Zhang BW. Electrochemical analysis of ascorbic acid and uric acid on defect-engineered carbon nanotube networks with increased exposure of graphitic edge planes. Electrochem Commun. 2018;93:20–4.

    CAS  Google Scholar 

  27. Duan XG, Ao ZM, Sun HQ, Indrawirawan S, Wang YX, Kang J, et al. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl Mater Interfaces. 2015;7:4169–78.

    CAS  PubMed  Google Scholar 

  28. Beitollahi H, Tajik S, Asadi MH, Biparva P. Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation. J Anal Sci Technol. 2014;5:29–37.

    Google Scholar 

  29. Beitollahi H, Tajik S. Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol a. Environ Monit Assess. 2015;187:257–67.

    PubMed  Google Scholar 

  30. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2012;2:781–94.

    CAS  Google Scholar 

  31. Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk VK, Yashina LV, et al. The chemistry of imperfections in N-graphene. Nano Lett. 2014;14:4982–8.

    CAS  PubMed  Google Scholar 

  32. Dhavale VM, Gaikwad SS, Kurungot S. Activated nitrogen doped graphene shell towards electrochemical oxygen reduction reaction by its encapsulation on au nanoparticle (au@N-gr) in water-in-oil "nanoreactors". J Mater Chem A. 2014;2:1383–90.

    CAS  Google Scholar 

  33. Teridi MAM, Sookhakian M, Basirun WJ, Zakaria R, Schneider FK, da Silva WJ, et al. Plasmon enhanced organic devices utilizing highly ordered nanoimprinted gold nanodisks and nitrogen doped graphene. Nanoscale. 2015;7:7091–100.

    PubMed  Google Scholar 

  34. Li Z, An ZZ, Guo YY, Zhang KN, Chen XL, Zhang DX, et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta. 2016;161:713–20.

    CAS  PubMed  Google Scholar 

  35. Hao N, Hua R, Chen SB, Zhang Y, Zhou Z, Qian J, et al. Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens Bioelectron. 2018;101:14–20.

    CAS  PubMed  Google Scholar 

  36. Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry. 2017;114:24–32.

    CAS  PubMed  Google Scholar 

  37. Liu FM, Zhang Y, Yin W, Hou CJ, Huo DQ, He B, et al. A high-selectivity electrochemical sensor for ultra-trace lead (II) detection based on a nanocomposite consisting of nitrogen-doped graphene/gold nanoparticles functionalized with ETBD and Fe3O4@TiO2 core-shell nanoparticles. Sensors Actuators B Chem. 2017;242:889–96.

    CAS  Google Scholar 

  38. Saengsookwaow C, Rangkupan R, Chailapakul O, Rodthongkum N. Nitrogen-doped graphene-polyvinylpyrrolidone/gold nanoparticles modified electrode as a novel hydrazine sensor. Sensors Actuators B Chem. 2016;227:524–32.

    CAS  Google Scholar 

  39. Zhang JJ, Li RY, Li ZJ, Liu JK, Gu ZG, Wang GL. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene. Nanoscale. 2014;6:5458–66.

    CAS  Google Scholar 

  40. Ju J, Chen W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem. 2015;87:1903–10.

    CAS  PubMed  Google Scholar 

  41. Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens Bioelectron. 2016;81:259–67.

    CAS  PubMed  Google Scholar 

  42. Borowiec J, Wang R, Zhu LH, Zhang JD. Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta. 2013;99:138–44.

    CAS  Google Scholar 

  43. Yang GH, Li LL, Rana RK, Zhu JJ. Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon. 2013;61:357–66.

    CAS  Google Scholar 

  44. Jain U, Chauhan N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens Bioelectron. 2017;89:578–84.

    CAS  PubMed  Google Scholar 

  45. Li RY, Liu L, Bei HX, Li ZJ. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum. Biosens Bioelectron. 2016;79:457–66.

    CAS  Google Scholar 

  46. Fu JJ, Wang Y, Liu J, Huang KK, Chen Y, Li YF, et al. Low overpotential for electrochemically reducing CO2 to CO on nitrogen-doped graphene quantum dots-wrapped single-crystalline gold nanoparticles. ACS Energy Lett. 2018;3:946–51.

    CAS  Google Scholar 

  47. Zhu CZ, Guo SJ, Zhai YM, Dong SJ. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker. Langmuir. 2010;26:7614–8.

    CAS  PubMed  Google Scholar 

  48. Qin H, Liu J, Chen C, Wang J, Wang E. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer. Anal Chim Acta. 2012;712:127–31.

    CAS  PubMed  Google Scholar 

  49. Wang Y, Zhang S, Bai WS, Zheng JB. Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: a new nonenzymatic electrochemical sensor for glucose. Talanta. 2016;149:211–6.

    CAS  PubMed  Google Scholar 

  50. Li LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater. 2011;21:869–78.

    CAS  Google Scholar 

  51. Li XC, Zhong AN, Wei SS, Luo XL, Liang YH, Zhu Q. Polyelectrolyte functionalized gold nanoparticles-reduced graphene oxide nanohybrid for electrochemical determination of aminophenol isomers. Electrochim Acta. 2015;164:203–10.

    CAS  Google Scholar 

  52. Wu KL, Jiang BB, Cai YM, Wei XW, Li XZ, Cheong WC. Efficient electrocatalyst for glucose and ethanol based on cu/Ni/N-doped graphene hybrids. Chemelectrochem. 2017;4:1419–28.

    CAS  Google Scholar 

  53. Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc. 2006;1:246.

    CAS  PubMed  Google Scholar 

  54. Yu DS, Wei L, Jiang WC, Wang H, Sun B, Zhang Q, et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale. 2013;5:3457–64.

    CAS  PubMed  Google Scholar 

  55. Ma FX, Wang J, Wang FB, Xia XH. The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chem Commun. 2015;51:1198–201.

    CAS  Google Scholar 

  56. Vinayan BP, Ramaprabhu S. Platinum-TM (TM = Fe, co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications. Nanoscale. 2013;5:5109–18.

    CAS  PubMed  Google Scholar 

  57. Zhou WJ, Xiong TL, Shi CH, Zhou J, Zhou K, Zhu NW, et al. Bioreduction of precious metals by microorganism: efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2016;55:8416–20.

    CAS  Google Scholar 

  58. Wang L, Yin F, Yao C. N-doped graphene as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions in an alkaline electrolyte. Int J Hydrogen Energy. 2014;39:15913–9.

    CAS  Google Scholar 

  59. Kaur B, Srivastava R. Simultaneous electrochemical determination of nanomolar concentrations of aminophenol isomers using nanocrystalline zirconosilicate modified carbon paste electrode. Electrochim Acta. 2014;141:61–71.

    CAS  Google Scholar 

  60. Shahamirifard SA, Ghaedi M, Razmi Z, Hajati S. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode. Biosens Bioelectron. 2018;114:30–6.

    CAS  PubMed  Google Scholar 

  61. Feng QL, Duan KY, Ye XL, Lu DB, Du YL, Wang CM. A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor. Sensors Actuators B Chem. 2014;192:1–8.

    CAS  Google Scholar 

  62. Luo XL, Pan JB, Pan KM, Yu YY, Zhong AN, Wei SS, et al. An electrochemical sensor for hydrazine and nitrite based on graphene–cobalt hexacyanoferrate nanocomposite: toward environment and food detection. J Electroanal Chem. 2015;745:80–7.

    CAS  Google Scholar 

  63. Manica DP, Mitsumori Y, Ewing AG. Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip. Anal Chem. 2003;75:4572–457.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (21665004), the Guangxi Natural Science Foundation (2018GXNSFAA138022), the Open Fund of Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analysis (FPAC2017YD-01), and the Guangxi First-class Discipline Project for Pharmaceutical Sciences (No. GXFCDP-PS-2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Chen or Xinchun Li.

Ethics declarations

This research was approved by the Medical Ethical Committee of Guangxi Medical University and conducted according to the ethical standards of the institution.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.37 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Li, F., Huang, S. et al. Electrostatically mediated layer-by-layer assembly of nitrogen-doped graphene/PDDA/gold nanoparticle composites for electrochemical detection of uric acid. Anal Bioanal Chem 412, 669–680 (2020). https://doi.org/10.1007/s00216-019-02275-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02275-2

Keywords

Navigation