Skip to main content

Advertisement

Log in

An enzyme-free sensing platform based on molecularly imprinted polymer/MWCNT composite for sub-micromolar-level determination of pyruvic acid as a cancer biomarker

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pyruvic acid (PA) has been demonstrated to be an important cancer biomarker. Herein, carbon/carbon nanotube paste electrode was modified with the newly synthesized PA-imprinted polymer (MIP) and used as an enzyme-free sensor for PA assay. Methacrylic acid and ethylene glycol dimethacrylate were copolymerized in the presence of PA to prepare PA-IP. The MIP was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. To analyze PA by the MIP/CNT-CP electrode, the electrode was incubated in the PA solution for a constant time and then, the anodic differential pulse voltammetry signal was recorded. Both extraction and electrochemical determination solutions were the same, making the procedure simple and fast. Presence of the CNT in the MIP electrode led to a great enhancement in the PA signal. The MIP material not only pre-concentrated PA at the electrode surface but also increased the electron-exchange rate. This was confirmed by electrochemical impedance spectroscopy. The effects of electrode composition, extraction condition, and voltammetry parameters on the sensing efficiency were optimized. Dynamic linear range, detection limit, and RSD of the sensor were estimated to be 0.1–200 μM, 0.048 μM (S/N), and 3.6% (n = 3), respectively. The utility of the method was confirmed by appropriate analysis results obtained for the determination of PA in the plasma and urine samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang Y, Tian Y, Zhang Z, Peng C. A HILIC-MS/MS method for the simultaneous determination of seven organic acids in rat urine as biomarkers of exposure to realgar. J Chromatogr B. 2012;905:37–42.

    CAS  Google Scholar 

  2. Li Y, Ju X, Gao X, Zhao Y, Wu Y. Immobilization enzyme fluorescence capillary analysis for determination of lactic acid. Anal Chim Acta. 2008;610:249–56.

    CAS  PubMed  Google Scholar 

  3. Chen P, Nie LH, Yao SZ. Determination of lactic acid and pyruvic acid in serum and cerebrospinal fluid by ion-exclusion chromatography with a bulk acoustic wave detector. J Chromatogr B. 1995;673:153–8.

    CAS  Google Scholar 

  4. Li Y, Chen J, Lun SY. Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol. 2001;57:451–6.

    CAS  PubMed  Google Scholar 

  5. Aimetti M, Cacciatore S, Graziano A, Tenori L. Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics. 2012;8:465–74.

    CAS  Google Scholar 

  6. Smith MJH, Taylor KW. Blood pyruvate and α-ketoglutarate in normal and diabetic subjects. Br Med J. 1956;3:1035–8.

    Google Scholar 

  7. Stanko RT, Tietze DL, Arch JE. Body composition, energy utilization, and nitrogen metabolism with a 4.25-MJ/d low-energy diet supplemented with pyruvate. Am J Clin Nutr. 56:630–6.

    CAS  PubMed  Google Scholar 

  8. Liao JC, Hoffman NE, Barborlak JJ, Roth DA. High-performance liquid chromatography of pyruvic and α-ketoglutaric acids and its application in urine sample. Clin Chem. 1977;23(5):802–5.

    CAS  PubMed  Google Scholar 

  9. Magiera S, Baranowska I, Kusa J, Baranowski J. A liquid chromatography and tandem mass spectrometry method for the determination of potential biomarkers of cardiovascular disease. J Chromatogr B. 2013;919–920:20–9.

    Google Scholar 

  10. Makahleh A, Mohamed Ben-Hander G, Saad B. Determination of α-ketoglutaric and pyruvic acids in urine as potential biomarkers for diabetic II and liver cancer. Bioanalysis. 2015;7(6):713–23.

    CAS  PubMed  Google Scholar 

  11. Hur H, Paik MJ, Xuan Y, Nguyen DT, Ham IH. Quantitative measurement of organic acids in tissues from gastric cancer patients indicates increased glucose metabolism in gastric cancer. PLoS One. 2014;9(6):e98581.

    PubMed  PubMed Central  Google Scholar 

  12. Bhat MA, Prasad KVV, Trivedi D, Rajeev BR, Battur H. Pyruvic acid levels in serum and saliva: a new course for oral cancer screening. J Oral Maxillofac Pathol. 2016;20:102–5.

    PubMed  PubMed Central  Google Scholar 

  13. Lee MS, Moon EJ, Lee SW, Kim MS, Kim KW, Kim YJ. Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models. Cancer Res. 2001;61:3290–3.

    CAS  PubMed  Google Scholar 

  14. Berntsson S. Spectrophotometric determination of pyruvic acid by salicylaldehyde method. Anal Chem. 1955;27:1659–80.

    CAS  Google Scholar 

  15. Zhao YY, Gao XF, Li YS, Ju X, Zhang J, Zheng J. Determination of pyruvic acid by using enzymic fluorescence capillary analysis. Talanta. 2008;76:265–70.

    CAS  PubMed  Google Scholar 

  16. Montanari L, Perretti G, Natella F, Guidi A, Fantozzi P. Organic and phenolic acids in beer. LWT—Food Sci Technol. 1999;32:535–9.

    CAS  Google Scholar 

  17. Zielinska D, Poels I, Pietraszkiewicz M, Radecki J, Geise HJ, Nagels LJ. Potentiometric detection of organic acids in liquid chromatography using polymeric liquid membrane electrodes incorporating macrocyclic hexaamines. J Chromatogr A. 2001;915:25–33.

    CAS  PubMed  Google Scholar 

  18. Suarez MH, Rodriguez ER, Romero CD. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur Food Res Technol. 2008;226:423–35.

    Google Scholar 

  19. Ewaschuk JB, Naylor JM, Barabash WA, Zello GA. High-performance liquid chromatographic assay of lactic, pyruvic and acetic acids and lactic acid stereoisomers in calf feces, rumen fluid and urine. J Chromatogr B. 2004;850:347–51.

    Google Scholar 

  20. Rodrigues CI, Marta L, Maia R, Miranda M, Ribeirinho M, Máguas C. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. J Food Compos Anal. 2007;20:440–8.

    CAS  Google Scholar 

  21. Montenegro P, Valente IM, Gonçalves LM, Rodrigues JA, Barros AA. Single determination of α-ketoglutaric acid and pyruvic acid in beer by HPLC with UV detection. Anal Methods. 2011;3:1207–12.

    CAS  Google Scholar 

  22. Yoo KS, Pike LM. Determination of background pyruvic acid concentrations in onions, Allium species, and other vegetables. Sci Hortic. 2001;89:249–56.

    CAS  Google Scholar 

  23. Nakurte I, Keisa A, Rostoks N. Development and validation of a reversed-phase liquid chromatography method for the simultaneous determination of indole-3-acetic acid, indole-3-pyruvic acid, and abscisic acid in barley (Hordeum vulgare L.). J Anal Meth. 2012;2012:1–6.

    Google Scholar 

  24. Jin M, Dong Q, Dong R, Jin W. Direct electrochemical determination of pyruvate in human sweat by capillary zone electrophoresis. Electrophoresis. 2001;22:2793–6.

    CAS  PubMed  Google Scholar 

  25. Klampfl CW, Buchberger W, Haddad PR. Determination of organic acids in food samples by capillary zone electrophoresis. J Chromatogr A. 2000;881:357–64.

    CAS  PubMed  Google Scholar 

  26. Li W, Pan C, Hou T, Wang X, Li F. Selective and colorimetric detection of pyruvic acid using conformational switch of i-motif DNA and unmodified gold nanoparticles. Anal Methods. 2014;6:1645–9.

    CAS  Google Scholar 

  27. Rodrigues JEA, Erny GL, Barros AS, Esteves VI, Brandão T, Ferreira AA, et al. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods. Anal Chim Acta. 2010;674:166–75.

    CAS  PubMed  Google Scholar 

  28. Marcos P, Lué-Mer MP, Ricardo R, Mximo G, Maribel V, Luis BJ, et al. Pungency evaluation of onion cultivars from the Venezuelan West-Center region by flow injection analysis–UV–visible spectroscopy pyruvate determination. Talanta. 2004;64:1299–303.

    CAS  PubMed  Google Scholar 

  29. Li X, Ling L, He Z, Song G, Lu S, Yuan L, et al. Development of a chemiluminescence method for the simultaneous determination of pyruvic and tartaric acids in human serum based upon their reaction with cerium (IV) in the presence of rutheniumtrispyridine. Microchem J. 2000;64:9–13.

    CAS  Google Scholar 

  30. Mizutani F, Yabuki S, Sato Y, Sawaguchi T, Iijima S. Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly(vinyl alcohol)/polyion complex-bilayer membrane. Electrochim Acta. 2000;45:2945–52.

    CAS  Google Scholar 

  31. Situmorang M, Gooding JJ, Hibbert DB, Barnett D. The development of a pyruvate biosensor using electrodeposited polytyramine. Electroanalysis. 2002;14:17–21.

    CAS  Google Scholar 

  32. Ghica ME, Brett CMA. Development of novel glucose and pyruvate biosensors at poly(neutral red) modified carbon film electrodes. Application to Natural Samples. Electroanalysis. 2006;18:748–56.

    CAS  Google Scholar 

  33. Akyilmaz E, Yorganci E. Construction of an amperometric pyruvate oxidase enzyme electrode for determination of pyruvate and phosphate. Electrochim Acta. 2007;52:7972–7.

    CAS  Google Scholar 

  34. Martin C, Huser H, Servat K, Kokoh KB. Selective electroreduction of pyruvic acid on lead electrode in acid medium. Electrochim Acta. 2005;50:2431–5.

    CAS  Google Scholar 

  35. Wang J, Diao P. Direct electrochemical detection of pyruvic acid by cobalt oxyhydroxide modified indium tin oxide electrodes. Electrochim Acta. 2011;56:10159–65.

    CAS  Google Scholar 

  36. Brahman PK, Pandey N, Topkaya SN, Singhai R. Fullerene–C60–MWCNT composite film based ultrasensitive electrochemical sensing platform for the trace analysis of pyruvic acid in biological fluids. Talanta. 2015;134:554–9.

    CAS  PubMed  Google Scholar 

  37. Alizadeh T, Mirzagholipur S. A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles–graphene nanocomposite. Sensors Actuators B Chem. 2014;198:438–47.

    CAS  Google Scholar 

  38. Prodromidis MI, Tzouwara-Karayanni SM, Karayannis MI, Vadgama PM. Bioelectrochemical determination of citric acid in real samples using a fully automated flow injection manifold. Analyst. 1997;122:1101–6.

    CAS  PubMed  Google Scholar 

  39. Alizadeh T, Hamidi N, Ganjali MR, Nourozi P. Development of a highly selective and sensitive electrochemical sensor for Bi3+ determination based on nano-structured bismuth-imprinted polymer modified carbon/carbon nanotube paste electrode. Sensors Actuators B Chem. 2017;245:605–14.

    CAS  Google Scholar 

  40. Alizadeh T, Amjadi S. Indirect voltammetric determination of nicotinic acid by using a graphite paste electrode modified with reduced graphene oxide and a molecularly imprinted polymer. Microchim Acta. 2017;184:2687–95.

    CAS  Google Scholar 

  41. Hsu SC, Cheng HT, Wu PX, Weng CJ, Santiago KS, Yeh JM. Electrochemical sensor constructed using a carbon paste electrode modified with mesoporous silica encapsulating PANI chains decorated with GNPs for detection of ascorbic acid. Electrochim Acta. 2017;238:246–56.

    CAS  Google Scholar 

  42. Alizadeh T, Ganjali MR, Rafiei F. Trace level and highly selective determination of urea in various real samples based upon voltammetric analysis of diacetylmonoxime-urea reaction product on the carbon nanotube/carbon paste electrode. Anal Chim Acta. 2017;974:54–62.

    CAS  PubMed  Google Scholar 

  43. Alizadeh T, Ganjali MR, Akhoundian M. Fabrication of an extra sensitive voltammetric sensor using nanoparticles of molecularly imprinted polymer for determination of ultra-trace promethazine in plasma sample. Int J Electrochem Sci. 2012;7:10427–41.

    CAS  Google Scholar 

  44. Uzun L, Turner APF. Molecularly-imprinted polymer sensors: realizing their potential. Biosens Bioelectron. 2016;76:131–44.

    CAS  PubMed  Google Scholar 

  45. Ashley J, Shahbazi MA, Kant K, Chidambar VA, Wolff A, Bang DD, et al. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron. 2017;91:606–15.

    CAS  PubMed  Google Scholar 

  46. Wackerlig J, Lieberzeit PA. Molecularly imprinted polymer nanoparticles in chemical sensing – synthesis, characterisation and application. Sensors Actuators B Chem. 2015;207:144–57.

    CAS  Google Scholar 

  47. Alizadeh T, Amjadi S. Indirect voltammetric determination of nicotinic acid by using a graphite paste electrode modified with reduced graphene oxide and a molecularly imprinted polymer. Microchim Acta. 2017;184:2687–95.

    CAS  Google Scholar 

  48. Alizadeh T, Azizi S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens Bioelectron. 2016;81:198–206.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taher Alizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, T., Nayeri, S. An enzyme-free sensing platform based on molecularly imprinted polymer/MWCNT composite for sub-micromolar-level determination of pyruvic acid as a cancer biomarker. Anal Bioanal Chem 412, 657–667 (2020). https://doi.org/10.1007/s00216-019-02273-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02273-4

Keywords

Navigation