Skip to main content

Quantification of low-content encapsulated active cosmetic ingredients in complex semi-solid formulations by means of attenuated total reflectance-infrared spectroscopy

Abstract

Attenuated total reflectance-infrared (ATR-IR) spectroscopy is a robust tool for molecular characterisation of matter. Applied to semi-solid formulations, it enables rapid and reliable data collection without pre-analytical requirements. Based on nano-encapsulated Omegalight®, a skin-lightening active cosmetic ingredient (ACI), incorporated in a hydrogel, it is first demonstrated that, despite the high water content and the chemical complexity of the samples (i.e. number of ingredients), the spectral features of the ACI can be detected and monitored. Secondly, with a total of 105 samples divided into a training set (n = 60) and an unknown set (n = 45) covering a 0.5% w/w–5% w/w concentration range, the study further investigates the quantitative performance of ATR-IR coupled with partial least squares regression (PLSR). Through a step-by-step approach in testing different cross-validation protocols, accuracy (root mean square error of cross-validation (RMSECV)) and linearity between the experimental and predicted concentrations (R2) of ATR-IR are consistently evaluated to be respectively 0.097% (w/w) and 0.995 with a lower LOD = 0.067% (w/w). Subsequently, further evaluation of the accuracy (relative error of the predicted concentration compared with the true value, expressed as %) of the analysis was undertaken with the 45 unknown samples that were defined as unknown and analysed by PLSR. The outcome of the analysis demonstrates the ruggedness and the consistency of the determination performed using the ATR-IR data. With an average relative error of 2.5% w/w and only 5 samples out of 45 blind samples exhibiting a relative error above the 5% threshold, high accuracy quantification of the nano-encapsulated ACI can be unambiguously achieved by means of the label-free and non-destructive technique of ATR-IR spectroscopy. Ultimately, the study demonstrates that the analytical capabilities of ATR-IR hold significant potential for applications in the cosmetics industry, and although the path remains long, the present study is one step further to support validation of the technique, albeit for the specific case of Omegalight®.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Larkin PJ. Chapter 2 - Basic principles. In: Larkin PJ, editor. Infrared and Raman spectroscopy. 2nd ed: Elsevier; 2018. p. 7–28.

  2. Bunaciu AA, Aboul-Enein HY, Fleschin S. Application of Fourier transform infrared spectrophotometry in pharmaceutical drugs analysis. Appl Spectrosc Rev. 2010;45(3):206–19.

    Article  Google Scholar 

  3. Wooley KL, Hawker CJ, Lee R, Fréchet JMJ. One-step synthesis of hyperbranched polyesters. Molecular weight control and chain end functionalization. Polym J. 1994;26(2):187–97.

    CAS  Article  Google Scholar 

  4. Herkert T, Prinz H, Kovar K. One hundred percent online identity check of pharmaceutical products by near-infrared spectroscopy on the packaging line. Eur J Pharm Biopharm. 2001;51(1):9–16.

    CAS  PubMed  Article  Google Scholar 

  5. Infrared spectroscopy for process analytical applications. Process Anal Technol. p. 157–94.

  6. Hertrampf A, Sousa RM, Menezes JC, Herdling T. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods. J Pharm Biomed Anal. 2016;124:246–53.

    CAS  PubMed  Article  Google Scholar 

  7. Ali SM, Bonnier F, Lambkin H, Flynn K, McDonagh V, Healy C, et al. A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections. Anal Methods. 2013;5(9):2281–91.

    CAS  Article  Google Scholar 

  8. Wartewig S, Neubert RH. Pharmaceutical applications of mid-IR and Raman spectroscopy. Adv Drug Deliv Rev. 2005;57(8):1144–70.

    CAS  PubMed  Article  Google Scholar 

  9. Ramer GaL B. Attenuated total reflection Fourier transform infrared spectroscopy. Encyclopedia of Analytical Chemistry. Meyers RA, Meyers RA (eds). 2013.

  10. Palo M, Kogermann K, Genina N, Fors D, Peltonen J, Heinämäki J, et al. Quantification of caffeine and loperamide in printed formulations by infrared spectroscopy. J Drug Deliv Sci Technol. 2016;34:60–70.

    CAS  Article  Google Scholar 

  11. Bonnier F, Blasco H, Wasselet C, Brachet G, Respaud R, Carvalho LFCS, et al. Ultra-filtration of human serum for improved quantitative analysis of low molecular weight biomarkers using ATR-IR spectroscopy. Analyst. 2017;142(8):1285–98.

    CAS  PubMed  Article  Google Scholar 

  12. Ali SM, Bonnier F, Tfayli A, Lambkin H, Flynn K, McDonagh V, et al. Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing. J Biomed Opt. 2013;18(6):061202.

    PubMed  Article  Google Scholar 

  13. Kalinkova GN. Infrared spectroscopy in pharmacy. Vib Spectrosc. 1999;19(2):307–20.

    CAS  Article  Google Scholar 

  14. Schulz H, Quilitzsch R, Krüger H. Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy. J Mol Struct. 2003;661–662:299–306.

    Article  Google Scholar 

  15. Sandasi M, Kamatou GPP, Gavaghan C, Baranska M, Viljoen AM. A quality control method for geranium oil based on vibrational spectroscopy and chemometric data analysis. Vib Spectrosc. 2011;57(2):242–7.

    CAS  Article  Google Scholar 

  16. Tankeu S, Vermaak I, Kamatou G, Viljoen A. Vibrational spectroscopy as a rapid quality control method for Melaleuca alternifolia Cheel (Tea Tree Oil). Phytochem Anal. 2014;25(1):81–8.

    CAS  PubMed  Article  Google Scholar 

  17. Miloudi L, Bonnier F, Bertrand D, Byrne HJ, Perse X, Chourpa I, et al. Quantitative analysis of curcumin-loaded alginate nanocarriers in hydrogels using Raman and attenuated total reflection infrared spectroscopy. Anal Bioanal Chem. 2017;409(19):4593–605.

    CAS  PubMed  Article  Google Scholar 

  18. Masmoudi H, Dreau YL, Piccerelle P, Kister J. The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. Int J Pharm. 2005;289(1–2):117–31.

    CAS  PubMed  Article  Google Scholar 

  19. Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci. 2012;57(5):875–910.

    CAS  Article  Google Scholar 

  20. Muller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.

    CAS  PubMed  Article  Google Scholar 

  21. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131–55.

    CAS  PubMed  Article  Google Scholar 

  22. Davidov-Pardo G, McClements DJ. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci Technol. 2014;38(2):88–103.

    CAS  Article  Google Scholar 

  23. Nguyen HT, Munnier E, Souce M, Perse X, David S, Bonnier F, et al. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application. Nanotechnology. 2015;26(25):255101.

    CAS  PubMed  Article  Google Scholar 

  24. Nguyen HTP, Munnier E, Perse X, Vial F, Yvergnaux F, Perrier T, et al. Qualitative and quantitative study of the potential of lipid nanocapsules of one hundred twenty nanometers for the topical administration of hydrophobic molecules. J Pharm Sci. 2016;105(10):3191–8.

    CAS  PubMed  Article  Google Scholar 

  25. Nguyen HTP, Souce M, Perse X, Vial F, Perrier T, Yvergnaux F, et al. Lipid-based submicron capsules as a strategy to include high concentrations of a hydrophobic lightening agent in a hydrogel. Int J Cosmet Sci. 2017;39(4):450–6.

    CAS  PubMed  Article  Google Scholar 

  26. Roberts MS, Mohammed Y, Pastore MN, Namjoshi S, Yousef S, Alinaghi A, et al. Topical and cutaneous delivery using nanosystems. J Control Release. 2017;247:86–105.

    CAS  PubMed  Article  Google Scholar 

  27. Managuli RS, Kumar L, Chonkar AD, Shirodkar RK, Lewis S, Koteshwara KB, et al. Development and validation of a stability-indicating RP-HPLC method by a statistical optimization process for the quantification of asenapine maleate in lipidic nanoformulations. J Chromatogr Sci. 2016;54(8):1290–300.

    CAS  PubMed  Article  Google Scholar 

  28. Woodhouse EJ, Breyman S. Green chemistry as social movement? Sci Technol Hum Values. 2005;30(2):199–222.

    Article  Google Scholar 

  29. Miloudi L, Bonnier F, Barreau K, Bertrand D, Perse X, Yvergnaux F, et al. ATR-IR coupled to partial least squares regression (PLSR) for monitoring an encapsulated active molecule in complex semi-solid formulations. Analyst. 2018;143(10):2377–89.

    CAS  PubMed  Article  Google Scholar 

  30. Gerretzen J, Szymanska E, Bart J, Davies AN, van Manen HJ, van den Heuvel ER, et al. Boosting model performance and interpretation by entangling preprocessing selection and variable selection. Anal Chim Acta. 2016;938:44–52.

    CAS  PubMed  Article  Google Scholar 

  31. Heraud P, Wood BR, Beardall J, McNaughton D. Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom. 2006;20(5):193–7.

    CAS  Article  Google Scholar 

  32. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30.

    CAS  Article  Google Scholar 

  33. Byrne HJ, Knief P, Keating ME, Bonnier F. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem Soc Rev. 2016;45(7):1865–78.

    CAS  PubMed  Article  Google Scholar 

  34. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–87.

    CAS  PubMed  Article  Google Scholar 

  35. Afseth NK, Kohler A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom Intell Lab Syst. 2012;117:92–9.

    CAS  Article  Google Scholar 

  36. Wold S, Ruhe A, Wold H. W. J. Dunn I. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput. 1984;5(3):735–43.

    Article  Google Scholar 

  37. Bonnier F, Byrne HJ. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst. 2012;137(2):322–32.

    CAS  PubMed  Article  Google Scholar 

  38. Hibbert DB. Vocabulary of concepts and terms in chemometrics (IUPAC Recommendations 2016). Pure Appl Chem. 2016;407.

  39. Allegrini F, Olivieri AC. IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal Chem. 2014;86(15):7858–66.

    CAS  PubMed  Article  Google Scholar 

  40. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work is part of the project MISTIC 2017-00118114.

Funding

This research received financial support from Conseil Régional Centre Val de Loire and the Cosmétosciences programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Bonnier.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 32.1 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonnier, F., Miloudi, L., Henry, S. et al. Quantification of low-content encapsulated active cosmetic ingredients in complex semi-solid formulations by means of attenuated total reflectance-infrared spectroscopy. Anal Bioanal Chem 412, 159–169 (2020). https://doi.org/10.1007/s00216-019-02221-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02221-2

Keywords

  • Infrared spectroscopy
  • Attenuated total reflectance
  • Omegalight®
  • Alginate nano-carriers
  • Multivariate analysis
  • Hydrogels
  • Label-free quantification