Skip to main content

Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye

Abstract

A challenge for paper-based cation sensors relying on classical carrier-based ion-selective optodes (ISOs) is their pH-cross response caused by the use of H+-sensitive chromoionophores as optical signal transducers. This work demonstrates fully pH-independent fluorescence-based calcium detection with a paper-based plasticizer-free ISO. To achieve a pH-independent assay, a solvatochromic dye (SD) instead of a traditional H+-sensitive chromoionophore has been applied to the paper-based ISO by means of inkjet printing technology. The detection principle depends on an ionophore-driven phase-transfer ion-exchange reaction between target cations and the positively charged SD, which no longer involves H+ in the optical signal transduction process. The developed paper-based ISOs with the SD resulted in Ca2+ concentration-dependent response curves not affected by the sample pH (pH 6.0, 7.0, and 8.0). The dynamic range obtained for Ca2+ detection was from 10−5 to 1 mol L−1 with a detection limit of 19.3 μmol L−1. Additionally, excellent selectivity derived from the used ionophore has been confirmed. As a simple practical application, the determination of Ca2+ in mineral water has been achieved without the pH-buffering process required for conventional cation-exchange ISOs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bakker E, Bühlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General Characteristics. Chem Rev. 1997;97:3083–132.

    CAS  PubMed  Article  Google Scholar 

  2. Mistlberger G, Crespo GA, Bakker E. Ionophore-based optical sensors. Annu Rev Anal Chem. 2014;7:483–512.

    Article  CAS  Google Scholar 

  3. Xie X, Bakker E. Ion selective optodes: from the bulk to the nanoscale. Anal Bioanal Chem. 2015;407:3899-910.

    CAS  PubMed  Article  Google Scholar 

  4. Mikhelson K, Peshkova M. Advances and trends in ionophore-based chemical sensors. Russ Chem Rev. 2015;84(6):555-578.

    Article  Google Scholar 

  5. Xie X, Zhai J, Bakker E. Potentiometric response from ion-selective nanospheres with voltage-sensitive dyes. J Am Chem Soc. 2014;136(47):16465–8.

    CAS  PubMed  Article  Google Scholar 

  6. Zhai J, Xie X, Bakker E. Solvatochromic dyes as ph-independent indicators for ionophore nanosphere-based complexometric titrations. Anal Chem. 2015;87(24):12318–23.

    CAS  PubMed  Article  Google Scholar 

  7. Xie X, Gutiérrez A, Trofimov V, Szilagyi I, Soldati T, Bakker E. Charged solvatochromic dyes as signal transducers in pH independent fluorescent and colorimetric ion selective nanosensors. Anal Chem. 2015;87(19):9954–9.

    CAS  PubMed  Article  Google Scholar 

  8. Xie X, Bakker E. Determination of effective stability constants of ion-carrier complexes in ion selective nanospheres with charged solvatochromic dyes. Anal Chem. 2015;87(22):11587–91.

    CAS  PubMed  Article  Google Scholar 

  9. Wang L, Xie X, Zhai J, Bakker E. Reversible pH-independent optical potassium sensor with lipophilic solvatochromic dye transducer on surface modified microporous nylon. Chem Commun. 2016;52(99):14254–7.

    CAS  Article  Google Scholar 

  10. Du X, Xie X. Non-equilibrium diffusion controlled ion-selective optical sensor for blood potassium determination. ACS Sens. 2017;2(10):1410–4.

    CAS  PubMed  Article  Google Scholar 

  11. Lu W, Xiaojiang X, Tianchi C, Jérôme B, Bakker E. Surface-doped polystyrene microsensors containing lipophilic solvatochromic dye transducers. Chem Eur J. 2018;24(31):7921–5.

    Article  CAS  Google Scholar 

  12. Du X, Yang L, Hu W, Wang R, Zhai J, Xie X. A plasticizer-free miniaturized optical ion sensing platform with ionophores and silicon-based particles. Anal Chem. 2018;90(9):5818–24.

    CAS  PubMed  Article  Google Scholar 

  13. Wang L, Sadler S, Cao T, Xie X, Von Filseck JM, Bakker E. Simplified fabrication for ion-selective optical emulsion sensor with hydrophobic solvatochromic dye transducer: a cautionary tale. Anal Chem. 2019;91(14):8973–8.

    CAS  PubMed  Article  Google Scholar 

  14. Xie X. Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors. Anal Bioanal Chem. 2016;408(11):2717–25.

    CAS  PubMed  Article  Google Scholar 

  15. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing -xPOCT. Trends Biotechnol. 2017;35(8):728–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Majors CE, Smith CA, Natoli ME, Kundrod KA, Richards-Kortum R. Point-of-care diagnostics to improve maternal and neonatal health in low-resource settings. Lab Chip. 2017;17(20):3351–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low volume, portable bioassays. Angew Chem Int Ed. 2007;46:1318–20.

    CAS  Article  Google Scholar 

  18. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8(12):2146–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210–51.

    CAS  PubMed  Article  Google Scholar 

  20. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.

    CAS  PubMed  Article  Google Scholar 

  21. Nilghaz A, Guan L, Tan W, Shen W. Advances of paper-based microfluidics for diagnostics - the original motivation and current status. ACS Sens. 2016;1(12):1382–93.

    CAS  Article  Google Scholar 

  22. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: Emerging themes and applications. Anal Chem. 2016;89(1):71–91.

    PubMed  Article  CAS  Google Scholar 

  23. Yamada K, Shibata H, Suzuki K, Citterio D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip. 2017;17:1206–49.

    CAS  PubMed  Article  Google Scholar 

  24. Tian T, Bi Y, Xu X, Zhu Z, Yang C. Integrated paper-based microfluidic devices for point-of-care testing. Anal Methods. 2018;10(29):3567–81.

    Article  Google Scholar 

  25. Gerold CT, Bakker E, Henry CS. Selective distance-based K+ quantification on paper-based microfluidics. Anal Chem. 2018;90(7):4894–900.

    CAS  PubMed  Article  Google Scholar 

  26. Kassal P, Sigurnjak M, Steinberg IM. Paper-based ion-selective optodes for continuous sensing: reversible potassium ion monitoring. Talanta. 2019;193:51–5.

    CAS  PubMed  Article  Google Scholar 

  27. Shibata H, Hiruta Y, Citterio D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst. 2019;144:1178–86.

    CAS  PubMed  Article  Google Scholar 

  28. Shibata H, Henares TG, Yamada K, Suzuki K, Citterio D. Implementation of a plasticized PVC-based cation-selective optode system into a paper-based analytical device for colorimetric sodium detection. Analyst. 2018;143(3):678–86.

    CAS  PubMed  Article  Google Scholar 

  29. Soda Y, Shibata H, Yamada K, Suzuki K, Citterio D. Selective detection of K+ by ion-selective optode nanoparticles on cellulosic filter paper substrates. ACS Applied Nano Mater. 2018;1(4):1792–800.

    CAS  Article  Google Scholar 

  30. Wang X, Qin Y, Meyerhoff ME. Paper-based plasticizer-free sodium ion-selective sensor with camera phone as a detector. Chem Commun. 2015;51:15176–9.

    CAS  Article  Google Scholar 

  31. Wang X, Zhang Q, Nam C, Hickner M, Mahoney M, Meyerhoff ME. An ionophore-based anion-selective optode printed on cellulose paper. Angew Chem Int Ed. 2017;56:11826–30.

    CAS  Article  Google Scholar 

  32. Wang X, Mahoney M, Meyerhoff ME. Inkjet-printed paper-based colorimetric polyion sensor using a smartphone as a detector. Anal Chem. 2017;89:12334–41.

    CAS  PubMed  Article  Google Scholar 

  33. Ferguson SA, Wang X, Mahoney M, Meyerhoff ME. Detection and quantification of polyquaterniums via polyion-sensitive ion-selective optodes inkjet printed on cellulose paper. Anal Sci. 2018;34(1):45–50.

    CAS  PubMed  Article  Google Scholar 

  34. Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80(18):6928–34.

    CAS  PubMed  Article  Google Scholar 

  35. Komuro N, Takaki S, Suzuki K, Citterio D. Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem. 2013;405:5785–805.

    CAS  PubMed  Article  Google Scholar 

  36. Yamada K, Henares TG, Suzuki K, Citterio D. Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed. 2015;54:5294–310.

    CAS  Article  Google Scholar 

  37. Escandar G, Gómez DG, Mansilla AE, de la Peña AM, Goicoechea H. Determination of carbamazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection. Anal Chim Acta. 2004;506(2):161–70.

    CAS  Article  Google Scholar 

  38. Kontturi E, Tammelin T, Österberg M. Cellulose―model films and the fundamental approach. Chem Soc Rev. 2006;35(12):1287–304.

    CAS  PubMed  Article  Google Scholar 

  39. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–94.

    CAS  PubMed  Article  Google Scholar 

  40. Credou J, Berthelot T. Cellulose: from biocompatible to bioactive material. J Mater Chem B. 2014;2(30):4767–88.

    CAS  PubMed  Article  Google Scholar 

  41. Xie X, Zhai J, Jarolímová Z, Bakker E. Determination of pKa values of hydrophobic colorimetric pH sensitive probes in nanospheres. Anal Chem. 2016;88(6):3015–8.

    CAS  PubMed  Article  Google Scholar 

  42. Elif Kormalı Ertürün H. The use of multi-walled carbon nanotubes and titanium oxide nano particles in the construction of calcium ionophore IV based calcium-selective electrodes. Int J Electrochem Sci. 2018;13:9452–65.

    Article  CAS  Google Scholar 

  43. Xie X, Zhai J, Bakker E. pH independent nano-optode sensors based on exhaustive ion-selective nanospheres. Anal Chem. 2014;86(6):2853–6.

    CAS  PubMed  Article  Google Scholar 

  44. Karita S, Kaneta T. Chelate titrations of Ca2+ and Mg2+ using microfluidic paper-based analytical devices. Anal Chim Acta. 2016;924:60–7.

    CAS  PubMed  Article  Google Scholar 

  45. Ostad MA, Hajinia A, Heidari T. A novel direct and cost effective method for fabricating paper-based microfluidic device by commercial eye pencil and its application for determining simultaneous calcium and magnesium. Microchem J. 2017;133:545–50.

    CAS  Article  Google Scholar 

  46. Rahbar M, Wheeler AR, Paull B, Macka M. Ion-exchange based immobilization of chromogenic reagents on microfluidic paper analytical devices. Anal Chem. 2019;91:8756–61.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in Direct Optical Detection with guest editors Antje J. Baeumner, Günter Gauglitz, and Jiri Homola.

Electronic supplementary material

ESM 1

(PDF 4474 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shibata, H., Ikeda, Y., Hiruta, Y. et al. Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye. Anal Bioanal Chem 412, 3489–3497 (2020). https://doi.org/10.1007/s00216-019-02218-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02218-x

Keywords

  • Ionophore-based ion-selective optodes
  • Paper-based analytical devices
  • Inkjet printing technology
  • Fluorescence detection
  • Solvatochromic dyes
  • Calcium ion sensing