Skip to main content

Advertisement

Log in

Raman spectroscopy reveals distinct differences between two closely related bacterial strains, Mycobacterium indicus pranii and Mycobacterium intracellulare

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A common technique used to differentiate bacterial species and to determine evolutionary relationships is sequencing their 16S ribosomal RNA genes. However, this method fails when organisms exhibit high similarity in these sequences. Two such strains that have identical 16S rRNA sequences are Mycobacterium indicus pranii (MIP) and Mycobacterium intracellulare. MIP is of significance as it is used as an adjuvant for protection against tuberculosis and leprosy; in addition, it shows potent anti-cancer activity. On the other hand, M. intracellulare is an opportunistic pathogen and causes severe respiratory infections in AIDS patients. It is important to differentiate these two bacterial species as they co-exist in immuno-compromised individuals. To unambiguously distinguish these two closely related bacterial strains, we employed Raman and resonance Raman spectroscopy in conjunction with multivariate statistical tools. Phenotypic profiling for these bacterial species was performed in a kinetic manner. Differences were observed in the mycolic acid profile and carotenoid pigments to show that MIP is biochemically distinct from M. intracellulare. Resonance Raman studies confirmed that carotenoids were produced by both MIP as well as M. intracellulare, though the latter produced higher amounts. Overall, this study demonstrates the potential of Raman spectroscopy in differentiating two closely related mycobacterial strains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clarke PH. The scientific study of bacteria, 1780–1980. In: Leadbetter ER, Poindexter JS, editors. Bacteria in nature: Volume 1: Bacterial activities in perspective. Boston: Springer US; 1985. p. 1–37.

    Google Scholar 

  2. Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol. 1999;2(3):299–305. https://doi.org/10.1016/S1369-5274(99)80052-6.

    Article  CAS  PubMed  Google Scholar 

  3. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25(1):39–67. https://doi.org/10.1111/j.1574-6976.2001.tb00571.x.

    Article  PubMed  Google Scholar 

  4. Poretsky R, Rodriguez RL, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9(4):e93827. https://doi.org/10.1371/journal.pone.0093827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forbes BA. Mycobacterial taxonomy. J Clin Microbiol. 2017;55(2):380–3. https://doi.org/10.1128/JCM.01287-16.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akram SM, Attia FN. Mycobacterium avium intracellulare. Treasure Island (FL): StatPearls; 2019.

    Google Scholar 

  7. Podder S, Rakshit S, Ponnusamy M, Nandi D. Efficacy of bacteria in cancer immunotherapy: special emphasis on the potential of mycobacterial species. Clin Cancer Drugs. 2016;3:100. https://doi.org/10.2174/2212697X03666160824130123.

    Article  CAS  Google Scholar 

  8. Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, et al. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PLoS One. 2009;4(7):e6263. https://doi.org/10.1371/journal.pone.0006263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faujdar J, Gupta P, Natrajan M, Das R, Chauhan DS, Katoch VM, et al. Mycobacterium indicus pranii as stand-alone or adjunct immunotherapeutic in treatment of experimental animal tuberculosis. Indian J Med Microbiol. 2011;134(5):696–703. https://doi.org/10.4103/0971-5916.90999.

    Article  CAS  Google Scholar 

  10. Talwar GP, Zaheer SA, Mukherjee R, Walia R, Misra RS, Sharma AK, et al. Immunotherapeutic effects of a vaccine based on a saprophytic cultivable mycobacterium, Mycobacterium w in multibacillary leprosy patients. Vaccine. 1990;8(2):121–9.

    Article  CAS  Google Scholar 

  11. Zaheer SA, Mukherjee R, Ramkumar B, Misra RS, Sharma AK, Kar HK, et al. Combined multidrug and Mycobacterium w vaccine therapy in patients with multibacillary leprosy. J Infect Dis. 1993;167(2):401–10. https://doi.org/10.1093/infdis/167.2.401.

    Article  CAS  PubMed  Google Scholar 

  12. Belani CP, Chakraborty BC, Modi RI, Khamar BM. A randomized trial of TLR-2 agonist CADI-05 targeting desmocollin-3 for advanced non-small-cell lung cancer. Ann Oncol. 2016;28(2):298–304. https://doi.org/10.1093/annonc/mdw608.

    Article  Google Scholar 

  13. Talwar GP, Gupta JC, Mustafa AS, Kar HK, Katoch K, Parida SK, et al. Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties. Biologics. 2017;11:55–63. https://doi.org/10.2147/btt.s128308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmad F, Mani J, Kumar P, Haridas S, Upadhyay P, Bhaskar S. Activation of anti-tumor immune response and reduction of regulatory T cells with Mycobacterium indicus pranii (MIP) therapy in tumor bearing mice. PLoS One. 2011;6(9):e25424. https://doi.org/10.1371/journal.pone.0025424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khamar B. Small cell carcinoma of the urinary bladder successfully managed with palliative radiotherapy and immunotherapy. Allied J Clin Oncol Cancer Res. 2018;1(1):12–6.

    Google Scholar 

  16. Rakshit S, Ponnusamy M, Papanna S, Saha B, Ahmed A, Nandi D. Immunotherapeutic efficacy of Mycobacterium indicus pranii in eliciting anti-tumor T cell responses: critical roles of IFNgamma. Int J Cancer. 2012;130(4):865–75. https://doi.org/10.1002/ijc.26099.

    Article  CAS  PubMed  Google Scholar 

  17. Rahman SA, Singh Y, Kohli S, Ahmad J, Ehtesham NZ, Tyagi AK, et al. Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. mBio. 2014;5(6):e02020. https://doi.org/10.1128/mBio.02020-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexander DC, Turenne CY. “Mycobacterium indicus pranii” is a strain of Mycobacterium intracellulare. mBio. 2015;6(2):e00013. https://doi.org/10.1128/mBio.00013-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rahman SA, Singh Y, Kohli S, Ahmad J, Ehtesham NZ, Tyagi AK, et al. Reply to “‘Mycobacterium indicus pranii” is a strain of Mycobacterium intracellulare’: “M. indicus pranii” is a distinct strain, not derived from M. intracellulare, and is an organism at an evolutionary transition point between a fast grower and slow grower. mBio. 2015;6(2). https://doi.org/10.1128/mBio.00352-15.

  20. Kim SY, Park HY, Jeong BH, Jeon K, Huh HJ, Ki CS, et al. Molecular analysis of clinical isolates previously diagnosed as Mycobacterium intracellulare reveals incidental findings of “Mycobacterium indicus pranii” genotypes in human lung infection. BMC Infect Dis. 2015;15:406. https://doi.org/10.1186/s12879-015-1140-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K, Umapathy S. Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev. 2016;45(7):1879–900. https://doi.org/10.1039/c5cs00540j.

    Article  CAS  PubMed  Google Scholar 

  22. Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018;8(46):25888–908. https://doi.org/10.1039/c8ra04491k.

    Article  CAS  Google Scholar 

  23. Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol. 2003;41(1):324–9. https://doi.org/10.1128/jcm.41.1.324-329.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibelings MS, Maquelin K, Endtz HP, Bruining HA, Puppels GJ. Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy. Clin Microbiol Infect. 2005;11(5):353–8. https://doi.org/10.1111/j.1469-0691.2005.01103.x.

    Article  CAS  PubMed  Google Scholar 

  25. Buijtels PC, Willemse-Erix HF, Petit PL, Endtz HP, Puppels GJ, Verbrugh HA, et al. Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol. 2008;46(3):961–5. https://doi.org/10.1128/JCM.01763-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Matange N, Umapathy S, Visweswariah SS. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy. FEMS Microbiol Lett. 2015;362(3):1–6. https://doi.org/10.1093/femsle/fnu048.

    Article  CAS  PubMed  Google Scholar 

  27. Sil S, Mukherjee R, Kumar NSA, Kingston J, Singh U. Detection and classification of bacteria using Raman spectroscopy combined with multivariate analysis. Def Life Sci J. 2017;2(4):435–41.

    Article  Google Scholar 

  28. Stockel S, Stanca AS, Helbig J, Rosch P, Popp J. Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Anal Bioanal Chem. 2015;407(29):8919–23. https://doi.org/10.1007/s00216-015-9031-5.

    Article  CAS  PubMed  Google Scholar 

  29. Stockel S, Meisel S, Lorenz B, Kloss S, Henk S, Dees S, et al. Raman spectroscopic identification of Mycobacterium tuberculosis. J Biophotonics. 2017;10(5):727–34. https://doi.org/10.1002/jbio.201600174.

    Article  CAS  PubMed  Google Scholar 

  30. Bhaskarla C, Das M, Verma T, Kumar A, Mahadevan S, Nandi D. Roles of Lon protease and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology. 2016;162(5):764–76. https://doi.org/10.1099/mic.0.000271.

    Article  CAS  PubMed  Google Scholar 

  31. Verma T, Bhaskarla C, Sadhir I, Sreedharan S, Nandi D. Non-steroidal anti-inflammatory drugs, acetaminophen and ibuprofen, induce phenotypic antibiotic resistance in Escherichia coli: roles of marA and acrB. FEMS Microbiol Lett. 2018;365(22). https://doi.org/10.1093/femsle/fny251.

  32. Kumar S, Visvanathan A, Arivazhagan A, Santhosh V, Somasundaram K, Umapathy S. Assessment of radiation resistance and therapeutic targeting of cancer stem cells: a Raman spectroscopic study of glioblastoma. Anal Chem. 2018;90(20):12067–74. https://doi.org/10.1021/acs.analchem.8b02879.

    Article  CAS  PubMed  Google Scholar 

  33. Robledo JA, Murillo AM, Rouzaud F. Physiological role and potential clinical interest of mycobacterial pigments. IUBMB Life. 2011;63(2):71–8. https://doi.org/10.1002/iub.424.

    Article  CAS  PubMed  Google Scholar 

  34. Saini V, Raghuvanshi S, Khurana JP, Ahmed N, Hasnain SE, Tyagi AK. Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution. Nucleic Acids Res. 2012;40(21):10832–50. https://doi.org/10.1093/nar/gks793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541. https://doi.org/10.1080/05704920701551530.

    Article  CAS  Google Scholar 

  36. Jehlicka J, Edwards HG, Oren A. Raman spectroscopy of microbial pigments. Appl Environ Microbiol. 2014;80(11):3286–95. https://doi.org/10.1128/AEM.00699-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rimai L, Heyde ME, Gill D. Vibrational spectra of some carotenoids and related linear polyenes. Raman spectroscopic study. J Am Chem Soc. 1973;95(14):4493–501. https://doi.org/10.1021/ja00795a005.

    Article  CAS  PubMed  Google Scholar 

  38. Talwar GP, Gupta JC, Kumar Y, Nand KN, Ahlawat N, Garg H, et al. Immunological approaches for treatment of advanced stage cancers invariably refractory to drugs. J Clin Cell Immunol. 2014;5:247. https://doi.org/10.4172/2155-9899.1000247.

    Article  CAS  Google Scholar 

  39. Harz M, Rosch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130(11):1543–50. https://doi.org/10.1039/b507715j.

    Article  CAS  PubMed  Google Scholar 

  40. Ren Y, Ji Y, Teng L, Zhang H. Using Raman spectroscopy and chemometrics to identify the growth phase of Lactobacillus casei Zhang during batch culture at the single-cell level. Microb Cell Factories. 2017;16(1):233. https://doi.org/10.1186/s12934-017-0849-8.

    Article  CAS  Google Scholar 

  41. Germond A, Ichimura T, Horinouchi T, Fujita H, Furusawa C, Watanabe TM. Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. Commun Biol. 2018;1:85. https://doi.org/10.1038/s42003-018-0093-8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stevenson K, Hughes VM, de Juan L, Inglis NF, Wright F, Sharp JM. Molecular characterization of pigmented and nonpigmented isolates of Mycobacterium avium subsp. paratuberculosis. J Clin Microbiol. 2002;40(5):1798–804. https://doi.org/10.1128/jcm.40.5.1798-1804.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saviola B, Felton J. Acidochromogenicity is a common characteristic in nontuberculous mycobacteria. BMC Res Notes. 2011;4:466. https://doi.org/10.1186/1756-0500-4-466.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saviola B. Pigments of pathogenic bacteria. J Microbiol Exp. 2018;6(2):114–5. https://doi.org/10.15406/jmen.2018.06.00198.

    Article  Google Scholar 

  45. Marrakchi H, Laneelle MA, Daffe M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol. 2014;21(1):67–85. https://doi.org/10.1016/j.chembiol.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  46. Stockel S, Schumacher W, Meisel S, Elschner M, Rosch P, Popp J. Raman spectroscopy-compatible inactivation method for pathogenic endospores. Appl Environ Microbiol. 2010;76(9):2895–907. https://doi.org/10.1128/AEM.02481-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kniggendorf AK, Gaul TW, Meinhardt-Wollweber M. Hierarchical cluster analysis (HCA) of microorganisms: an assessment of algorithms for resonance Raman spectra. Appl Spectrosc. 2011;65(2):165–73. https://doi.org/10.1366/10-06064.

    Article  CAS  Google Scholar 

  48. Baron VO, Chen M, Clark SO, Williams A, Hammond RJH, Dholakia K, et al. Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease. Sci Rep. 2017;7(1):9844. https://doi.org/10.1038/s41598-017-10234-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the infrastructure provided by the AFM facility, Centre for BioSystems Science and Engineering, and Ms. Monisha Vasist for her expertise in AFM imaging. This study was aided by the infrastructural support provided by the DBT-IISc partnership program, DST-FIST and UGC Centre for Advanced Study to the Department of Biochemistry, IISc. SU acknowledges the J.C Bose Fellowship from DST. AS is a senior fellow of Wellcome Trust-DBT India Alliance and acknowledges funding by a DBT grant (BT/PR13522/COE/34/27/2015) for this work. The support of all the members of the laboratories of DpN and SU is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siva Umapathy or Dipankar Nandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, T., Podder, S., Mehta, M. et al. Raman spectroscopy reveals distinct differences between two closely related bacterial strains, Mycobacterium indicus pranii and Mycobacterium intracellulare. Anal Bioanal Chem 411, 7997–8009 (2019). https://doi.org/10.1007/s00216-019-02197-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02197-z

Keywords

Navigation