Defining a system suitability limit to decide on column deterioration and to facilitate column transfers in chiral supercritical fluid chromatography


The separation of enantiomers is an important requirement during the entire drug life cycle in the pharmaceutical industry. High-performance liquid chromatography and supercritical fluid chromatography (SFC) are the main chromatographic techniques used to separate enantiomers. Since chiral stationary phases are often extensively used once a method has been developed, columns will age and must be replaced after a certain period. However, no practical guidelines exist to determine when a column is deteriorated or to decide whether a transfer to another column (with the same chiral selector) is successful. In this study, a system suitability limit for resolution was defined, based on an intermediate (time-different) precision study in SFC on four immobilized polysaccharide-based columns that only differed in manufacturer or particle size. This system suitability limit could be used to decide on column deterioration or as a requirement to evaluate whether a separation transfer was successful. Some method adaptations may be necessary to obtain successful transfers. An approach was proposed, which helped the analyst to make successful transfers.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    McConathy J, Owens MJ. Stereochemistry in drug action. Prim Care Companion J Clin Psychiatry. 2003;5:70–3.

    Article  Google Scholar 

  2. 2.

    Bonner WA. Parity violation and the evolution of biomolecular homochirality. Chirality. 2000;12:114–26.

    CAS  Article  Google Scholar 

  3. 3.

    Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res Part C - Embryo Today Rev. 2015;105:140–56.

    CAS  Article  Google Scholar 

  4. 4.

    European Medicines Agency. Guideline on test procedures and acceptance criteria for new veterinary drug substances and new medicinal products: chemical substances. 2005;1–20. Available from: Accessed 6 Apr 2019.

  5. 5.

    European Medicines Agency. Investigation of chiral active substances. 1994;381–91. Available from: Accessed 6 Apr 2019.

  6. 6.

    Shimazawa R, Nagai N, Toyoshima S, Okuda H. Present state of new chiral drug development and review in Japan. J Heal Sci. 2008;54:23–9.

    Article  Google Scholar 

  7. 7.

    Food and Drug Administration. Guidances (Drugs) - Development of new stereoisomeric drugs. Center for Drug Evaluation and Research; [cited 2015 Aug 7]. Available from:

  8. 8.

    Calcaterra A, D’Acquarica I. The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal. Elsevier B.V.; 2018;147:323–40. Available from:

  9. 9.

    Francotte ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A. 2001;906:379–97.

    CAS  Article  Google Scholar 

  10. 10.

    Speybrouck D, Lipka E. Preparative supercritical fluid chromatography: a powerful tool for chiral separations. J Chromatogr A. Elsevier B.V.; 2016;1467:33–55. Available from:

  11. 11.

    Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A. Elsevier B.V.; 2016;1467:2–18. Available from:

  12. 12.

    Desfontaine V, Guillarme D, Francotte E, Nováková L. Supercritical fluid chromatography in pharmaceutical analysis. J Pharm Biomed Anal. Elsevier B.V.; 2015;113:56–71. Available from:

  13. 13.

    Taylor LT. Supercritical fluid chromatography for the 21st century. J Supercrit Fluids. 2009;47:566–73.

    CAS  Article  Google Scholar 

  14. 14.

    De Klerck K, Vander Heyden Y, Mangelings D. Generic chiral method development in supercritical fluid chromatography and ultra-performance supercritical fluid chromatography. J Chromatogr A. Elsevier B.V.; 2014;1363:311–22. Available from:

  15. 15.

    Perrin C, Vu VA, Matthijs N, Maftouh M, Massart DL, Vander HY. Screening approach for chiral separation of pharmaceuticals: part I. Normal-phase liquid chromatography. J Chromatogr A. 2002;947:69–83.

    CAS  Article  Google Scholar 

  16. 16.

    Ates H, Mangelings D, Vander HY. Fast generic chiral separation strategies using electrophoretic and liquid chromatographic techniques. J Pharm Biomed Anal. 2008;48:288–94.

    CAS  Article  Google Scholar 

  17. 17.

    Felletti S, Ismail OH, De Luca C, Costa V, Gasparrini F, Pasti L, et al. Recent achievements and future challenges in supercritical fluid chromatography for the enantioselective separation of chiral pharmaceuticals. Chromatographia. Springer Berlin Heidelberg; 2019;82:65–75. Available from:

  18. 18.

    Lesellier E, West C. The many faces of packed column supercritical fluid chromatography - a critical review. J Chromatogr A. Elsevier B.V.; 2015;1382:2–46. Available from:

  19. 19.

    Miller L. Preparative enantioseparations using supercritical fluid chromatography. J Chromatogr A. Elsevier B.V.; 2012;1250:250–5. Available from:

  20. 20.

    Berger TA, Fogleman K, Staats T, Bente P, Crocket I, Farrell W, et al. The development of a semi-preparatory scale supercritical-fluid chromatograph for high-throughput purification of “combi-chem” libraries. J Biochem Biophys Methods. 2000;43:87–111.

    CAS  Article  Google Scholar 

  21. 21.

    Zhang Y, Wu DR, Wang-Iverson DB, Tymiak AA. Enantioselective chromatography in drug discovery. Drug Discov Today. 2005;10:571–7.

    CAS  Article  Google Scholar 

  22. 22.

    Matthijs N, Maftouh M, Vander HY. Chiral separation strategy in polar organic solvent chromatography and performance comparison with normal-phase liquid and supercritical-fluid chromatography. J Sep Sci. 2006;29:1353–62.

    CAS  Article  Google Scholar 

  23. 23.

    Huang Y, Feng Y, Tang G, Li M, Zhang T, Fillet M, et al. Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal. Elsevier B.V.; 2017;140:384–91. Available from:

  24. 24.

    Laboureur L, Guérineau V, Auxilien S, Yoshizawa S, Touboul D. Profiling of modified nucleosides from ribonucleic acid digestion by supercritical fluid chromatography coupled to high resolution mass spectrometry. J Chromatogr A. Elsevier B.V.; 2018;1537:118–27. Available from:

  25. 25.

    Lemasson E, Bertin S, Hennig P, Lesellier E, West C. Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization – mass spectrometry for impurity profiling of drug candidates. J Chromatogr A. Elsevier B.V.; 2016;1472:117–28. Available from:

  26. 26.

    Klesper K. High pressure gas chromatography above critical temperatures. J Org Chem. 1962;27:700–1.

    CAS  Article  Google Scholar 

  27. 27.

    De Klerck K, Mangelings D, Vander Heyden Y. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J Pharm Biomed Anal. Elsevier B.V.; 2012;69:77–92. Available from:

  28. 28.

    Cruz E, Euerby MR, Johnson CM, Hackett CA. Chromatographic classification of commercially available reversed-phase HPLC columns. Chromatographia. 1997;44:151–61.

    CAS  Article  Google Scholar 

  29. 29.

    Neue UD, Van Tran K, Iraneta PC, Alden BA. Characterization of HPLC packings. J Sep Sci. 2003;26:174–86.

    CAS  Article  Google Scholar 

  30. 30.

    Armstrong DW, Zhang B. Product review: chiral stationary phases for HPLC. Anal Chem. 2001;73:557 A-561 A. Available from:

  31. 31.

    Snyder LR, Dolan JW, Carr PW. The hydrophobic-subtraction model of reversed-phase column selectivity. J Chromatogr A. 2004;1060:77–116.

    CAS  Article  Google Scholar 

  32. 32.

    Nacalai. What happens when a column deteriorates? [cited 2019 Jul 24]. Available from:

  33. 33.

    Sigma-Aldrich. HPLC Troubleshooting Guide. 2009 [cited 2019 Jul 24]. p. 20. Available from:

  34. 34.

    De Klerck K, Vander Heyden Y, Mangelings D. Exploratory data analysis as a tool for similarity assessment and clustering of chiral polysaccharide-based systems used to separate pharmaceuticals in supercritical fluid chromatography. J Chromatogr A. Elsevier B.V.; 2014;1326:110–24. Available from:

  35. 35.

    Matthijs N, Vander HY. Enantiomeric impurity determination in capillary electrophoresis using a highly-sulfated cyclodextrins-based method. Biomed Chromatogr. 2006;20:696–709.

    CAS  Article  Google Scholar 

  36. 36.

    International Conference On Harmonisation. Validation of analytical procedures: text and methodology Q2(R1). 2005;1–13. Available from: Accessed 30 Sept 2019.

Download references


The authors would like to thank Ana Ocaña for performing a part of the experiments during her Erasmus stay. The authors are grateful to Phenomenex and YMC for providing columns.

Author information



Corresponding author

Correspondence to Debby Mangelings.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Electronic supplementary material


(PDF 556 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Declerck, S., Vander Heyden, Y. & Mangelings, D. Defining a system suitability limit to decide on column deterioration and to facilitate column transfers in chiral supercritical fluid chromatography. Anal Bioanal Chem 412, 6221–6230 (2020).

Download citation


  • Supercritical fluid chromatography
  • Enantioseparations
  • Intermediate-precision study
  • System suitability
  • Transfer