A novel colorimetric aptasensor for detection of chloramphenicol based on lanthanum ion–assisted gold nanoparticle aggregation and smartphone imaging


A label-free, rapid response colorimetric aptasensor for sensitive detection of chloramphenicol (CAP) was proposed, which was based on the strategy of ssDNA-modified gold nanoparticle (AuNP) aggregation assisted by lanthanum (La3+) ions. The AuNPs generated a color change that could be monitored in the red, green, and blue and analyzed by the smartphone imaging app. La3+, as a trigger agent, strongly combined with the phosphate groups of the surface of ssDNA-AuNPs probe, which helps create AuNP aggregation and the color change of AuNPs from red to blue. On the contrary, when mixing with CAP, the aptamer (Apt) bound to CAP to form a rigid structure of the Apt-CAP complex, and La3+ attached to the phosphate groups of the complex, which prevented the aptamer from binding to the surface of the AuNPs. As a result, the color of the AuNPs changed to violet-red. Finally, UV-vis absorption spectroscopy and the smartphone imaging app were employed to determine CAP with a lower detection limit of 7.65 nM and 5.88 nM, respectively. The proposed strategy featuring high selectivity and strong anti-interference ability for detection of CAP in practical samples was achieved. It is worth mentioning that the simple and portable colorimetric aptasensor will be used for facilitating on-site detection of food samples.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Yang K, Li HZ, Zhu X, Su JQ, Ren B, Zhu YG, et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell Raman spectroscopy in clinical samples. Anal Chem. 2019;91(9):6296–303.

    CAS  Article  Google Scholar 

  2. 2.

    Ma X, Guo N, Ren S, Wang S, Wang Y. Response of antibiotic resistance to the co-existence of chloramphenicol and copper during bio-electrochemical treatment of antibiotic-containing wastewater. Environ Int. 2019;126:127–33.

    CAS  Article  Google Scholar 

  3. 3.

    Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z, et al. Construction of Ce-MOF@COF hybrid nanostructure: label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron. 2019;127:92–100.

    CAS  Article  Google Scholar 

  4. 4.

    Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron. 2018;122:263–83.

    CAS  Article  Google Scholar 

  5. 5.

    Zhu Y, Yan K, Xu Z, Wu J, Zhang J. Cathodic “signal-on” photoelectrochemical aptasensor for chloramphenicol detection using hierarchical porous flower-like Bi-BiOI@C composite. Biosens Bioelectron. 2019;131:79–87.

    CAS  Article  Google Scholar 

  6. 6.

    Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell. 2010;37(3):311–20.

    CAS  Article  Google Scholar 

  7. 7.

    Di X, Wang X, Liu Y, Guo X, Di X. Solid-phase extraction coupled with switchable hydrophilicity solvent-based homogeneous liquid–liquid microextraction for chloramphenicol enrichment in environmental water samples: a novel alternative to classical extraction techniques. Anal Bioanal Chem. 2018;411(4):803–12.

    Article  Google Scholar 

  8. 8.

    Yan C, Zhang J, Yao L, Xue F, Lu J, Li B, et al. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem. 2018;260:208–12.

    CAS  Article  Google Scholar 

  9. 9.

    Qin X, Wang Q, Geng L, Shu X, Wang Y. A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta. 2019;197:28–35.

    CAS  Article  Google Scholar 

  10. 10.

    Chang H, Lv J, Zhang H, Zhang B, Wei W, Qiao Y. Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection. Biosens Bioelectron. 2017;87:579–86.

    CAS  Article  Google Scholar 

  11. 11.

    Zhu Y, Liu X, Yan K, Zhang J. A cathodic photovoltammetric sensor for chloramphenicol based on BiOI and graphene nanocomposites. Sensors Actuators B Chem. 2019;284:505–13.

    CAS  Article  Google Scholar 

  12. 12.

    Ivanov AE, Pushkarev AV, Orlov AV, Nikitin MP, Nikitin PI. Interferometric detection of chloramphenicol via its immunochemical recognition at polymer-coated nano-corrugated surfaces. Sensors Actuators B Chem. 2019;282:984–91.

    CAS  Article  Google Scholar 

  13. 13.

    Liang N, Huang P, Hou X, Li Z, Tao L, Zhao L. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Anal Bioanal Chem. 2016;408(6):1701–13.

    CAS  Article  Google Scholar 

  14. 14.

    Geng Y, Peveler WJ, Rotello VM. Array-based “chemical nose” sensing in diagnostics and drug discovery. Angew Chem Int Ed Eng. 2019;58(16):5190–200.

    CAS  Article  Google Scholar 

  15. 15.

    Campuzano S, Yanez-Sedeno P, Pingarron JM. Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem. 2019;411(9):1791–806.

    CAS  Article  Google Scholar 

  16. 16.

    Du Y, Dong S. Nucleic acid biosensors: recent advances and perspectives. Anal Chem. 2017;89(1):189–215.

    CAS  Article  Google Scholar 

  17. 17.

    Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens Bioelectron. 2019;130:1–19.

    CAS  Article  Google Scholar 

  18. 18.

    Zhou N, Yang L, Hu B, Song Y, He L, Chen W, et al. Core-shell heterostructured CuFe@FeFe Prussian Blue analogue coupling with silver nanoclusters via a one-step bioinspired approach: efficiently nonlabeled aptasensor for detection of bleomycin in various aqueous environments. Anal Chem. 2018;90(22):13624–31.

    CAS  Article  Google Scholar 

  19. 19.

    Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev. 2013;113(4):2842–62.

    CAS  Article  Google Scholar 

  20. 20.

    Das R, Dhiman A, Kapil A, Bansal V, Sharma TK. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme. Anal Bioanal Chem. 2019;411(6):1229–38.

    CAS  Article  Google Scholar 

  21. 21.

    Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed Eng. 2017;56(39):11916–20.

    CAS  Article  Google Scholar 

  22. 22.

    Zeng J, Gan N, Zhang K, He L, Lin J, Hu F, et al. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Talanta. 2019;199:491–8.

    CAS  Article  Google Scholar 

  23. 23.

    Zhou W, Saran R, Liu J. Metal sensing by DNA. Chem Rev. 2017;117(12):8272–325.

    CAS  Article  Google Scholar 

  24. 24.

    Wang M, Hu M, Liu J, Guo C, Peng D, Jia Q, et al. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens Bioelectron. 2019;132:8–16.

    CAS  Article  Google Scholar 

  25. 25.

    Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron. 2019;124-125:143–9.

    CAS  Article  Google Scholar 

  26. 26.

    Li D, Wang S, Wang L, Zhang H, Hu J. A simple colorimetric probe based on anti-aggregation of AuNPs for rapid and sensitive detection of malathion in environmental samples. Anal Bioanal Chem. 2019;411(12):2645–52.

    CAS  Article  Google Scholar 

  27. 27.

    Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–79.

    CAS  Article  Google Scholar 

  28. 28.

    Deng C, Liu H, Zhang M, Deng H, Lei C, Shen L, et al. Light-up nonthiolated aptasensor for low-mass, soluble amyloid-beta40 oligomers at high salt concentrations. Anal Chem. 2018;90(3):1710–7.

    CAS  Article  Google Scholar 

  29. 29.

    Huang Z, Chen J, Luo Z, Wang X, Duan Y. Label-free and enzyme-free colorimetric detection of Pb2+ based on RNA cleavage and annealing-accelerated hybridization chain reaction. Anal Chem. 2019;91(7):4806–13.

    CAS  Article  Google Scholar 

  30. 30.

    Mirau PA, Smith JE, Chavez JL, Hagen JA, Kelley-Loughnane N, Naik R. Structured DNA aptamer interactions with gold nanoparticles. Langmuir. 2018;34(5):2139–46.

    CAS  Article  Google Scholar 

  31. 31.

    Epanchintseva A, Vorobjev P, Pyshnyi D, Pyshnaya I. Fast and strong adsorption of native oligonucleotides on citrate-coated gold nanoparticles. Langmuir. 2018;34(1):164–72.

    CAS  Article  Google Scholar 

  32. 32.

    Park JW, Shumaker-Parry JS. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc. 2014;136(5):1907–21.

    CAS  Article  Google Scholar 

  33. 33.

    Bin X, Kraatz HB. Interaction of metal ions and DNA films on gold surfaces: an electrochemical impedance study. Analyst. 2009;134(7):1309–13.

    CAS  Article  Google Scholar 

  34. 34.

    Hepel M, Stobiecka M Detection of oxidative stress biomarkers using functional gold nanoparticles. Matijevic: E. [Ed.], in: Fine particles in medicine and pharmacy, Springer; 2012. Chapter 9, pp. 241–81.

    Google Scholar 

  35. 35.

    Hepel M, Blake D, McCabe M, Stobiecka M, Coopersmith K. Assembly of gold nanoparticles induced by metal ions. In: Hepel M, Zhong CJ, editors. Functional nanoparticles for bioanalysis, nanomedicine & bioelectronic devices, ACS Symposium Series Book. 1st ed. Oxford: Oxford University Press; 2012. p. 207–40.

    Google Scholar 

  36. 36.

    Huang PC, Gao N, Li JF, Wu FY. Colorimetric detection of methionine based on anti-aggregation of gold nanoparticles in the presence of melamine. Sensors Actuators B Chem. 2018;255:2779–84.

    CAS  Article  Google Scholar 

  37. 37.

    Lin B, Yu Y, Cao Y, Guo M, Zhu D, Dai J, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron. 2018;100:482–9.

    CAS  Article  Google Scholar 

  38. 38.

    Wu Y, Zhan S, Xing H, He L, Xu L, Zhou P. Nanoparticles assembled by aptamers and crystal violet for arsenic (III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale. 2012;4(21):6841–9.

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (nos. 21765014 and 21864018) and Graduate Innovation Specialized Fund Project of Jiangxi Province (no. YC2018-S084).

Author information



Corresponding authors

Correspondence to Pengcheng Huang or Fang-Ying Wu.

Ethics declarations

Ethical approval

This research does not involve any human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 323 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Yy., Liu, Bw., Huang, P. et al. A novel colorimetric aptasensor for detection of chloramphenicol based on lanthanum ion–assisted gold nanoparticle aggregation and smartphone imaging. Anal Bioanal Chem 411, 7511–7518 (2019). https://doi.org/10.1007/s00216-019-02149-7

Download citation


  • Antibiotics
  • Colorimetric aptasensor
  • Assisted aggregation
  • Food safety