Skip to main content
Log in

Assessing the influence of pH and cationic strength on i-motif DNA structure

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The i-motif is a biologically relevant non-canonical DNA structure formed by cytosine-rich sequences. Despite the importance of the factors affecting the formation/stability of such a structure, like pH, cation type and concentration, no systematic study that simultaneously analysed their effect on the i-motif in vitro has been carried out so far. Therefore, here we report a systematic study that aims to evaluate the effect of these factors, and their possible interaction, on the formation of an i-motif structure. Our results confirm that pH plays the main role in i-motif formation. However, we demonstrate that the effect of the cation concentration on the i-motif is strictly dependent on the pH, while no significant differences are observed among the investigated cation types.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bacolla A, Wells RD. Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog. 2009;48(4):273–85.

    Article  CAS  Google Scholar 

  2. van de Sande J, Ramsing N, Germann M, Elhorst W, Kalisch BW, von Kitzing E, et al. Parallel stranded DNA. Science. 1988;241(4865):551–7.

    Article  Google Scholar 

  3. Guéron M, Leroy J-L. The i-motif in nucleic acids. Curr Opin Struct Biol. 2000;10(3):326–31.

    Article  Google Scholar 

  4. Gajarský M, Živković ML, Stadlbauer P, Pagano B, Fiala R, Amato J, et al. Structure of a stable G-hairpin. J Am Chem Soc. 2017;139(10):3591–4.

    Article  Google Scholar 

  5. Cerofolini L, Amato J, Giachetti A, Limongelli V, Novellino E, Parrinello M, et al. G-triplex structure and formation propensity. Nucleic Acids Res. 2014;42(21):13393–404.

    Article  CAS  Google Scholar 

  6. Neidle S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat Rev Chem. 2017;1:41.

    Article  CAS  Google Scholar 

  7. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol. 2015;33(8):877–81.

    Article  Google Scholar 

  8. Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35(2):406–13.

    Article  CAS  Google Scholar 

  9. Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci. 2010. https://doi.org/10.1007/s00018-009-0131-2.

    Article  Google Scholar 

  10. Salvati E, Zizza P, Rizzo A, Iachettini S, Cingolani C, D’Angelo C, et al. Evidence for G-quadruplex in the promoter of vegfr-2 and its targeting to inhibit tumor angiogenesis. Nucleic Acids Res. 2014;42(5):2945–57.

    Article  CAS  Google Scholar 

  11. Zizza P, Cingolani C, Artuso S, Salvati E, Rizzo A, D’Angelo C, et al. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance. Nucleic Acids Res. 2016;44(4):1579–90.

    Article  Google Scholar 

  12. Gehring K, Leroy JLJ-L, Gueron M, Guéron M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature. 1993;363(6429):561–5.

    Article  CAS  Google Scholar 

  13. Amato J, Iaccarino N, Randazzo A, Novellino E, Pagano B. Noncanonical DNA secondary structures as drug targets: the prospect of the i-motif. ChemMedChem. 2014;9(9):2026–30.

    Article  CAS  Google Scholar 

  14. Zhou J, Wei C, Jia G, Wang X, Feng Z, Li C. Formation of i-motif structure at neutral and slightly alkaline pH. Mol BioSyst. 2010;6(3):580–6.

    Article  CAS  Google Scholar 

  15. Rajendran A, Nakano S, Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun. 2010;46(8):1299.

    Article  CAS  Google Scholar 

  16. Dzatko S, Krafcikova M, Hänsel-Hertsch R, Fessl T, Fiala R, Loja T, et al. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed. 2018;57(8):2165–9.

    Article  CAS  Google Scholar 

  17. Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, et al. I-motif DNA structures are formed in the nuclei of human cells. Nat Chem. 2018;10(6):631–7.

    Article  CAS  Google Scholar 

  18. Leardi R. Experimental design in chemistry: a tutorial. Anal Chim Acta. 2009;652(1–2):161–72.

    Article  CAS  Google Scholar 

  19. Pagano A, Iaccarino N, Abdelhamid MAS, Brancaccio D, Garzarella EU, Di Porzio A, et al. Common G-quadruplex binding agents found to interact with i-motif-forming DNA: unexpected multi-target-directed compounds. Front Chem. 2018;6:281.

  20. Cantor CR, Warshaw MM, Shapiro H. Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleolides. Biopolymers. 1970;9(9):1059–77.

    Article  CAS  Google Scholar 

  21. Savorani F, Tomasi G, Engelsen SB. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202(2):190–202.

    Article  CAS  Google Scholar 

  22. Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):2812–31.

    Article  CAS  Google Scholar 

  23. Box G, Hunter JS, Hunter W. Statistics Experimenters. 2nd ed. Wiley; 2009.

  24. Ebrahimi-Najafabadi H, Leardi R, Jalali-Heravi M. Experimental design in analytical chemistry—Part I: theory. J AOAC Int. 2014;97(1):3–11.

    Article  CAS  Google Scholar 

  25. Phan AT, Guéron M, Leroy JL. The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J Mol Biol. 2000;299(1):123–44.

    Article  CAS  Google Scholar 

  26. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S. Design of experiments, principles and applications. 3rd ed. Umea: Umetrics Academy; 2009.

    Google Scholar 

Download references

Funding

This work was supported by a grant from Regione Campania-POR Campania FESR 2014/2020 (Project No. B61G18000470007) and by the Italian Association for Cancer Research (IG No. 18695 to AR and No. 16730 to BP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Randazzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iaccarino, N., Di Porzio, A., Amato, J. et al. Assessing the influence of pH and cationic strength on i-motif DNA structure. Anal Bioanal Chem 411, 7473–7479 (2019). https://doi.org/10.1007/s00216-019-02120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02120-6

Keywords

Profiles

  1. Bruno Pagano