Skip to main content
Log in

Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We demonstrate a DNA-based optical fiber device that uses an in-fiber grating, a light absorbing coating with surface anchored DNA, and a built-in optical thermometer. This device is used for precisely thermal cycling surface DNA spots bound by a simple UV cross-linking technique. Near-infrared light of wavelengths near 1550 nm and guided power near 300 mW is coupled out of the fiber core by a tilted fiber Bragg grating inscribed in the fiber and absorbed by the coating to increase its temperature to more than 95 °C. A co-propagating broadband light signal (also in the near-infrared region) is used to measure the reflection spectrum of the grating and thus the temperature from the wavelength shifts of the reflection peaks. The device is capable of sensitive DNA melt analysis and can be used for DNA amplification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang X, Wolfbeis OS. Fiber-optic chemical sensors and biosensors (2013–2015). Anal Chem. 2016;88(1):203–27.

    Article  CAS  Google Scholar 

  2. Daems D, Knez K, Delport F, Spasic D, Lammertyn J. Real-time PCR melting analysis with fiber optic SPR enables multiplex DNA identification of bacteria. Analyst. 2016;141(6):1906–11.

    Article  CAS  Google Scholar 

  3. Nguyen L, Giannetti S, Warren-Smith S, Cooper A, Selleri S, Cucinotta A, et al. Genotyping single nucleotide polymorphisms using different molecular beacon multiplexed within a suspended core optical fiber. Sensors. 2014;14(8):14488–99.

    Article  Google Scholar 

  4. Sun D, Guo T, Ran Y, Huang Y, Guan B-O. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens Bioelectron. 2014;61:541–6.

    Article  CAS  Google Scholar 

  5. Bertucci A, Manicardi A, Candiani A, Giannetti S, Cucinotta A, Spoto G, et al. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosens Bioelectron. 2015;63:248–54.

    Article  CAS  Google Scholar 

  6. Wang X, Dong X, Zhou Y, Ni K, Cheng J, Chen Z. Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber. IEEE Photon Technol Lett. 2013;25(24):2458–61.

    Article  CAS  Google Scholar 

  7. Cashdollar LJ, Chen KP. Fiber Bragg grating flow sensors powered by in-fiber light. IEEE Sens J. 2005;5(6):1327–31.

    Article  Google Scholar 

  8. Wang X, Dong X, Zhou Y, Li Y, Cheng J, Chen Z. Optical fiber anemometer using silver-coated fiber Bragg grating and bitaper. Sens Actuators A. 2014;214:230–3.

    Article  CAS  Google Scholar 

  9. Caldas P, Jorge PAS, Rego G, Frazão O, Santos JL, Ferreira LA, et al. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure. Appl Opt. 2011;50(17):2738.

    Article  Google Scholar 

  10. Dong X, Zhou Y, Zhou W, Cheng J, Su Z. Compact anemometer using silver-coated fiber Bragg grating. IEEE Photon J. 2012;4(5):1381–6.

    Article  Google Scholar 

  11. Kashayap R. Fiber Bragg gratings. Academic Press; 2010.

  12. Albert J, Shao L-Y, Caucheteur C. Tilted fiber Bragg grating sensors. Laser Photon Rev. 2013;7(1):83–108.

    Article  CAS  Google Scholar 

  13. Carver GE, Koch TR, Salvemini D, Feder KS, Westbrook PS. A fiber-grating-based distributed light source. Photon Sens Technol. 2006;6371:63710H.

    Article  Google Scholar 

  14. Hoffmann J, Hin S, Von SF, Zengerle R, Roth G. Universal protocol for grafting PCR primers onto various lab-on-a-chip substrates for solid-phase PCR. RSC Adv. 2012;2(9):3885.

    Article  CAS  Google Scholar 

  15. Adessi C. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 2000;28(20):e87e.

    Article  Google Scholar 

  16. Gudnason H, Dufva M, Duong Bang D, Wolff A. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. Biotechniques. 2008;45(3):261–71.

    Article  CAS  Google Scholar 

  17. Wang Z, Zong S, Yang J, Li J, Cui Y. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron. 2011;26(6):2883–9.

    Article  CAS  Google Scholar 

  18. Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376(9749):1312–9.

    Article  CAS  Google Scholar 

  19. Alqarni SA, Albert J, Smelser CW. Fiber-grating-based hyperthermal therapeutic device for mm-sized ex vivo Lethal Volume. In: Advanced photonics 2018 (BGPP, IPR, NP, NOMA, sensors, networks, SPPCom, SOF). Washington: Optical Society of America; 2018. p. SeM2E.4.

  20. Pollet J, Janssen KPF, Knez K, Lammertyn J. Real-time monitoring of solid-phase PCR using fiber-optic SPR. Small. 2011;7(8):1003–6.

    Article  CAS  Google Scholar 

  21. Gao S, Zhang AP, Tam H-Y, Cho LH, Lu C. All-optical fiber anemometer based on laser heated fiber Bragg gratings. Opt Express. 2011;19(11):10124–30.

    Article  CAS  Google Scholar 

  22. Ge D, Wang X, Williams K, Levicky R. Thermostable DNA immobilization and temperature effects on surface hybridization. Langmuir. 2012;28(22):8446–55.

    Article  CAS  Google Scholar 

  23. Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007;35(19):e127.

    Article  Google Scholar 

  24. Eischeid AC. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes. 2011;4(1):263.

    Article  Google Scholar 

  25. Delport F, Pollet J, Janssen K, Verbruggen B, Knez K, Spasic D, et al. Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology. 2012;23(6):065503.

    Article  Google Scholar 

  26. Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15-60 seconds. Clin Chem. 2015;61(1):145–53.

    Article  Google Scholar 

  27. Montgomery JL, Wittwer CT. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments. Clin Chem. 2014;60(2):334–40.

    Article  CAS  Google Scholar 

  28. Shin Y, Perera AP, Kim KW, Park MK. Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip. 2013;13(11):2106–14.

    Article  CAS  Google Scholar 

  29. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014;181(13–14):1715–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada and Spartan Biosciences Inc. Gratings were fabricated in the Advanced Photonics Laboratory of Carleton University by Albane Laronche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Albert.

Ethics declarations

This research does not involve any human participants or animals.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koppert, J., Jean-Ruel, H., O’Neill, D. et al. Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling. Anal Bioanal Chem 411, 6813–6823 (2019). https://doi.org/10.1007/s00216-019-02072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02072-x

Keywords

Navigation