Skip to main content
Log in

Optical biosensing of Streptococcus agalactiae based on core/shell magnetic nanoparticle-quantum dot

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An immunomagnetic optical probe based on a core/shell magnetic nanoparticle–quantum dot was fabricated for detection of Streptococcus agalactiae, the causative agent of pneumonia and meningitis in newborns. The silica-coated magnetic nanoparticles conjugated with anti-S. agalactiae monoclonal antibody provided high specificity for pre-enrichment of bacteria from biological samples with a complex matrix such as milk. Compared with conventional methods such as culture and molecular techniques, the combination of fluorescent quantum dot and magnetic nanoparticle enhanced the sensitivity and speed of bacterial identification. The bio-functionalized fluorescent-magnetic nanoparticles were characterized by TEM, SEM, VSM, XRD, DLS, and FTIR and applied to the detection of S. agalactiae with a limit of 10 and 102 CFU/mL in PBS and milk, respectively. This immunomagnetic optical probe can be used for rapid isolation, sensitive, and specific detection of targeted bacteria without any treatment in clinical and animal samples in the presence of other infectious agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ab:

Antibody

FMNP-Ab:

Antibody-conjugated FMNPs

FMNPs:

Fluorescent-magnetic nanocomposite

MNPs:

Magnetic nanoparticles

QDs:

Quantum dots

References

  1. Dye C. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc B. 2014;369(1645):20130426.

    Article  Google Scholar 

  2. Anthony BF, Okada DM. The emergence of group B streptococci in infections of the newborn infant. Annu Rev Med. 1977;28(1):355–69.

    Article  CAS  PubMed  Google Scholar 

  3. Mweu MM, Nielsen SS, Halasa T, Toft N. Annual incidence, prevalence and transmission characteristics of Streptococcus agalactiae in Danish dairy herds. Prev Vet Med. 2012;106(3-4):244–50.

    Article  PubMed  Google Scholar 

  4. Lyhs U, Kulkas L, Katholm J, Waller KP, Saha K, Tomusk RJ, et al. Streptococcus agalactiae serotype IV in humans and cattle, northern Europe. Emerging Infect Dis. 2016;22(12):2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease: revised guidelines from CDC. Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention; 2010.

    Google Scholar 

  6. Smolinski MS, Hamburg MA, Lederberg J. Pathogen discovery, detection, and diagnostics . Microbial threats to health: emergence, detection, and response. Institute of Medicine (US) Committee on Emerging Microbial Threats to Health in the 21st Century; Washington (DC): National Academies Press (US); 2003.

  7. Behera T, Swain P, Mohapatra D. Virulence determination of bacterial isolates through culture in India ink including broth. J Microbiol Antimicrob. 2013;5(8):87–90.

    Article  Google Scholar 

  8. Sousa AM, Pereira MO. A prospect of current microbial diagnosis methods. In: Mendez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education, vol. 3. Badajoz: Formatex; 2013. p. 1429–38.

    Google Scholar 

  9. Wallet F, Nseir S, Baumann L, Herwegh S, Sendid B, Boulo M, et al. Preliminary clinical study using a multiplex real-time PCR test for the detection of bacterial and fungal DNA directly in blood. Clin Microbiol Infect. 2010;16(6):774–9.

    Article  CAS  PubMed  Google Scholar 

  10. Weile J, Knabbe C. Current applications and future trends of molecular diagnostics in clinical bacteriology. Anal Bioanal Chem. 2009;394(3):731–42.

    Article  CAS  PubMed  Google Scholar 

  11. Ni P-X, Ding X, Zhang Y-X, Yao X, Sun R-X, Wang P, et al. Rapid detection and identification of infectious pathogens based on high-throughput sequencing. Chin Med J. 2015;128(7):877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boardman AK, Wong WS, Premasiri WR, Ziegler LD, Lee JC, Miljkovic M, et al. Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal Chem. 2016;88(16):8026–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stevens KA, Jaykus L-A. Bacterial separation and concentration from complex sample matrices: a review. Crit Rev Microbiol. 2004;30(1):7–24.

    Article  PubMed  Google Scholar 

  14. Palchetti I, Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem. 2008;391(2):455–71.

    Article  CAS  PubMed  Google Scholar 

  15. Arruebo M, Fernández-Pacheco R, Velasco B, Marquina C, Arbiol J, Irusta S, et al. Antibody-functionalized hybrid superparamagnetic nanoparticles. Adv Funct Mater. 2007;17(9):1473–9.

    Article  CAS  Google Scholar 

  16. Cudjoe KS, Hagtvedt T, Dainty R. Immunomagnetic separation of Salmonella from foods and their detection using immunomagnetic particle (IMP)-ELISA. Int J Food Microbiol. 1995;27(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  17. Fu Z, Rogelj S, Kieft TL. Rapid detection of Escherichia coli O157: H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol. 2005;99(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  18. Fontaine M, Guillot E. An immunomagnetic separation–real-time PCR method for quantification of Cryptosporidium parvum in water samples. J Microbiol Methods. 2003;54(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  19. Dwivedi HP, Smiley RD, Jaykus L-A. Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol. 2013;97(8):3677–86.

    Article  CAS  PubMed  Google Scholar 

  20. Poshtiban S, Javed MA, Arutyunov D, Singh A, Banting G, Szymanski CM, et al. Phage receptor binding protein-based magnetic enrichment method as an aid for real time PCR detection of foodborne bacteria. Analyst. 2013;138(19):5619–26.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Salazar JK. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf. 2016;15(1):183–205.

    Article  CAS  Google Scholar 

  22. Jeníková G, Pazlarová J, Demnerová K. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int Microbiol. 2010;3(4):225–9.

    Google Scholar 

  23. Mansfield L, Forsythe S. The detection of Salmonella using a combined immunomagnetic separation and ELISA end-detection procedure. Lett Appl Microbiol. 2000;31(4):279–83.

    Article  CAS  PubMed  Google Scholar 

  24. Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, et al. Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal Chim Acta. 2006;573:158–63.

    Article  CAS  PubMed  Google Scholar 

  25. Varshney M, Li Y, Nanapanneni R, Johnson MG, Griffis CL. A chemiluminescence biosensor coupled with immunomagnetic separation for rapid detection of Salmonella typhimurium. J Rapid Methods Autom Microbiol. 2003;11(2):111–31.

    Article  CAS  Google Scholar 

  26. Lazcka O, Campo F, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22(7):1205–17.

    Article  CAS  PubMed  Google Scholar 

  27. Nayak M, Kotian A, Marathe S, Chakravortty D. Detection of microorganisms using biosensors—a smarter way towards detection techniques. Biosens Bioelectron. 2009;25(4):661–7.

    Article  CAS  PubMed  Google Scholar 

  28. Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater. 2005;4(6):435.

    Article  CAS  PubMed  Google Scholar 

  30. Samir TM, Mansour MM, Kazmierczak SC, Azzazy HM. Quantum dots: heralding a brighter future for clinical diagnostics. Nanomedicine. 2012;7(11):1755–69.

    Article  CAS  PubMed  Google Scholar 

  31. McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci. 2011;104:563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. J Nucl Med. 2009;50(4):493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng C-W, Li Y. Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater. 2010. https://doi.org/10.1155/2010/676839.

  34. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol. 2011;18(1):10–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Zhu J-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst. 2013;138(9):2506–15.

    Article  CAS  PubMed  Google Scholar 

  36. Di Corato R, Bigall NC, Ragusa A, Dorfs D, Genovese A, Marotta R, et al. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano. 2011;5(2):1109–21.

    Article  CAS  PubMed  Google Scholar 

  37. Yaohua H, Chengcheng W, Bing B, Mintong L, Wang R, Li Y. Detection of Staphylococcus aureus using quantum dots as fluorescence labels. Int J Agric Biol Eng. 2014;7(1):77–83.

    Google Scholar 

  38. You X, He R, Gao F, Shao J, Pan B, Cui D. Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology. 2007;18(3):035701.

    Article  CAS  PubMed  Google Scholar 

  39. Byrne B, Stack E, Gilmartin N, O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009;9(6):4407–45.

    Article  CAS  PubMed  Google Scholar 

  40. Kaittanis C, Santra S, Perez J. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Delivery Rev. 2010;62(4):408–23.

    Article  CAS  Google Scholar 

  41. Jamdagni P, Khatri P, Rana J. Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int Nano Lett. 2016;6(3):139–46.

    Article  CAS  Google Scholar 

  42. Singh G, Manohar M, Adegoke AA, Stenström TA, Shanker R. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update. J Nanopart Res. 2017;19(1):4.

    Article  Google Scholar 

  43. Ma J, Fan Q, Wang L, Jia N, Gu Z, Shen H. Synthesis of magnetic and fluorescent bifunctional nanocomposites and their applications in detection of lung cancer cells in humans. Talanta. 2010;81(4):1162–9.

    Article  CAS  PubMed  Google Scholar 

  44. Xie H-Y, Xie M, Zhang Z-L, Long Y-M, Liu X, Tang M-L, et al. Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition. Bioconjugate Chem. 2007;18(6):1749–55.

    Article  CAS  Google Scholar 

  45. Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, et al. Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir. 2009;26(2):1278–84.

    Article  CAS  Google Scholar 

  46. Xu Y, Karmakar A, Wang D, Mahmood MW, Watanabe F, Zhang Y, et al. Multifunctional Fe3O4 cored magnetic-quantum dot fluorescent nanocomposites for RF nanohyperthermia of cancer cells. J Phys Chem C. 2010;114(11):5020–6.

    Article  CAS  Google Scholar 

  47. Yang D, Hu J, Fu S. Controlled synthesis of magnetite−silica nanocomposites via a seeded sol−gel approach. J Phys Chem C. 2009;113(18):7646–51.

    Article  CAS  Google Scholar 

  48. Binaymotlagh R, Haghighi FH, Aboutalebi F, Mirahmadi-Zare SZ, Hadadzadeh H, Nasr-Esfahani M-H. Selective chemotherapy and imaging of colorectal and breast cancer cells by a modified MUC-1 aptamer conjugated to a poly(ethylene glycol)-dimethacrylate coated Fe3O4–AuNCs nanocomposite. New J Chem. 2019;43(1):238–48.

    Article  CAS  Google Scholar 

  49. Shoghi E, Mirahmadi-Zare SZ, Ghasemi R, Asghari M, Poorebrahim M, Nasr-Esfahani M-H. Nanosized aptameric cavities imprinted on the surface of magnetic nanoparticles for high-throughput protein recognition. Microchim Acta. 2018;185(4):241.

    Article  CAS  Google Scholar 

  50. Silva FO, Carvalho MS, Mendonça R, Macedo WA, Balzuweit K, Reiss P, et al. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Res Lett. 2012;7:536.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang C, Wang J, Li M, Qu X, Zhang K, Rong Z, et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst. 2016;141(22):6226–38.

    Article  CAS  PubMed  Google Scholar 

  52. HuiáShin H, JoonáCha H. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst. 2012;137(16):3609–12.

    Article  CAS  Google Scholar 

  53. Bai Y, Song M, Cui Y, Shi C, Wang D, Paoli GC, et al. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction. Anal Chim Acta. 2013;787:93–101.

    Article  CAS  PubMed  Google Scholar 

  54. Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater. 2006;18(23):3145–8.

    Article  CAS  Google Scholar 

  55. Cao C, Gontard LC, Thuy Tram LL, Wolff A, Bang DD. Dual enlargement of gold nanoparticles: from mechanism to scanometric detection of pathogenic bacteria. Small. 2011;7(12):1701–8.

    Article  CAS  PubMed  Google Scholar 

  56. Dogan Ü, Kasap E, Cetin D, Suludere Z, Boyaci IH, Türkyılmaz C, et al. Rapid detection of bacteria based on homogenous immunoassay using chitosan modified quantum dots. Sens Actuators B. 2016;233:369–78.

    Article  CAS  Google Scholar 

  57. Xue L, Zheng L, Zhang H, Jin X, Lin J. An ultrasensitive fluorescent biosensor using high gradient magnetic separation and quantum dots for fast detection of foodborne pathogenic bacteria. Sens Actuators B. 2018;265:318–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful for the financial support from the Iran National Institute for Medical Research Development (NIMAD) (Grant No. 940990).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyede Zohreh Mirahmadi-zare or Mehrdad Behmanesh.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, R., Mirahmadi-zare, S.Z., Nasr-Esfahani, M.H. et al. Optical biosensing of Streptococcus agalactiae based on core/shell magnetic nanoparticle-quantum dot. Anal Bioanal Chem 411, 6733–6743 (2019). https://doi.org/10.1007/s00216-019-02046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02046-z

Keywords

Navigation