Skip to main content

Zinc(II) salphen complex-based fluorescence optical sensor for biogenic amine detection


Biogenic amines have attracted interest among researchers because of their importance as biomarkers in determining the quality of food freshness in the food industry. A rapid and simple technique that is able to detect biogenic amines is needed. In this work, a new optical sensing material for one of the biogenic amines, histamine, based on a new zinc(II) salphen complex was developed. The binding of zinc(II) complexes without an electron-withdrawing group (complex 1) and with electron-withdrawing groups (F, complex 2; Cl, complex 3) to histamine resulted in enhancement of fluorescence. All complexes exhibited high affinity for histamine [binding constant of (7.14 ± 0.80) × 104, (3.33 ± 0.03) × 105, and (2.35 ± 0.14) × 105 M-1, respectively]. Complex 2 was chosen as the sensing material for further development of an optical sensor for biogenic amines in the following step since it displayed enhanced optical properties in comparison with complexes 1 and 3. The optical sensor for biogenic amines used silica microparticles as the immobilisation support and histamine as the analyte. The optical sensor had a limit of detection for histamine of 4.4 × 10-12 M, with a linear working range between 1.0 × 10-11 and 1.0 × 10-6 M (R2 = 0.9844). The sensor showed good reproducibility, with a low relative standard deviation (5.5 %). In addition, the sensor exhibited good selectivity towards histamine and cadaverine over other amines, such as 1,2-phenylenediamine, triethylamine, and trimethylamine. Recovery and real sample studies suggested that complex 2 could be a promising biogenic amine optical sensing material that can be applied in the food industry, especially in controlling the safety of food for it to remain fresh and healthy for consumption.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. Lehane L, Olley J. Histamine fish poisoning revisited. Int J Food Microbiol. 2000;58(1–2):1–37.

    CAS  Article  Google Scholar 

  2. Castillero P, Roales J, Lopes-Costa T, Sánchez-Valencia JR, Barranco A, González-Elipe AR, et al. Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films. Sensors. 2017;17(1):1–14.

    Article  Google Scholar 

  3. Pospiskova K, Safarik I, Sebela M, Kuncova G. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim Acta. 2013;180(3–4):311–8.

    CAS  Article  Google Scholar 

  4. Hasanah U, Setyowati M, Efendi R, Muslem M, Sani M, Diyana N, Safitri E, Yook Heng L, Idroes R. Preparation and characterization of a pectin membrane-based optical pH sensor for fish freshness monitoring. Biosensors. 2019;9(2):60. 

  5. Di Fusco M, Federico R, Boffi A, MacOne A, Favero G, Mazzei F. Characterization and application of a diamine oxidase from Lathyrus sativus as component of an electrochemical biosensor for the determination of biogenic amines in wine and beer. Anal Bioanal Chem. 2011;401(2):707–16.

    Article  Google Scholar 

  6. Karovicova J, Kohajdova Z. Biogenic amines in food. ChemInform. 2005;36(34).

  7. Lapa-Guimarães J, Pickova J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J Chromatogr A. 2004;1045(1–2):223–32.

    Article  Google Scholar 

  8. Steiner MS, Meier RJ, Spangler C, Duerkop A, Wolfbeis OS. Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain. Microchim Acta. 2009;167(3–4):259–66.

    CAS  Article  Google Scholar 

  9. Bergwerff AA, Van Knapen F. Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety. J AOAC Int. 2006;89(3):826–31.

    CAS  PubMed  Google Scholar 

  10. Fazial FF, Tan LL, Zubairi SI. Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sensors Actuators, B Chem. 2018;269:36–45. 

  11. Chaicham A, Kongwutthivech J, Tuntulani T, Tomapatanaget B. Couple of histamine blue fluorescence chemosensor and surface charge selector of FC-modified silica nanoporous for highly specific histamine detection via FRET-process. Sensors Actuators B Chem. 2018;258:621–7.

    CAS  Article  Google Scholar 

  12. Wasoh H, Hengb LY, Bakar FA, Wagiran R, Salleh AB, Yusof NA, et al. A simple capacitive biosensor device for histamine measurement. Sens Rev. 2012;32(3):245–50.

    Article  Google Scholar 

  13. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, Souza FD. Using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives. Anal Chem. 2009;81(7):2633–43.

    CAS  Article  Google Scholar 

  14. Antoine FR, Wei CI, Littell RC, Quinn BP, Hogle ADMM. Free Amino acids in dark- and white-muscle fish as determined by. Food Chem Toxicol. 2001;66(1):72–7.

    CAS  Google Scholar 

  15. Guo QN, Li ZY, Chan WH, Lau KC, Crossley MJ. Appending zinc tetraphenylporphyrin with an amine receptor at β-pyrrolic carbon for designing a selective histamine chemosensor. Supramol Chem. 2010;22(2):122–9.

    CAS  Article  Google Scholar 

  16. Iordache AM, Cristescu R, Fagadar-Cosma E, Popescu AC, Ciucu AA, Iordache SM, et al. Histamine detection using functionalized porphyrin as electrochemical mediator. C R Chim. 2018;21(3–4):270–6.

    CAS  Article  Google Scholar 

  17. Reed JE, Arnal AA, Neidle S, Vilar R. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes. J Am Chem Soc. 2006;128(18):5992–3.

    CAS  Article  Google Scholar 

  18. Nabei A, Kuroda-Sowa T, Okubo T, Maekawa M, Munakata M. The effect of molecular packing on the occurrence of spin crossover phenomena in one-dimensional Fe(II)-bis-Schiff base complexes. Inorg Chim Acta. 2008;361(12–13):3489–93.

    CAS  Article  Google Scholar 

  19. Karim NHA, Mendoza O, Shivalingam A, Thompson AJ, Ghosh S, Kuimova MK, et al. Salphen metal complexes as tunable G-quadruplex binders and optical probes. RSC Adv. 2014;4(7):3355–63.

    Article  Google Scholar 

  20. Consiglio G, Failla S, Pietro OI, Purrello R, Di Bella S. Controlling the molecular aggregation. An amphiphilic Schiff-base zinc(II) complex as supramolecular fluorescent probe. Dalton Trans. 2009;(47):10426–8.

  21. Chow CF, Kong HK, Leung SW, Chiu BKW, Koo CK, Lei ENY, et al. Heterobimetallic Ru(II)-Eu(III) complex as chemodosimeter for selective biogenic amine odorants detection in fish sample. Anal Chem. 2011;83(1):289–96.

    CAS  Article  Google Scholar 

  22. Shamsuddin R, Sahudin MA, Hassan NH, Karim NHA. Interaction of N,N’-bis[4-[1-(2-hydroxyethoxy)]salicylidene]-phenyldiamine-nickel(II) and copper(II) complexes with G-quadruplex DNA. Malays J Anal Sci. 2017;21(3):544–51.

    Google Scholar 

  23. Jiang N, Li SY, Xie SS, Li ZR, Wang KDG, Wang XB, et al. Design, synthesis and evaluation of multifunctional salphen derivatives for the treatment of Alzheimer’s disease. Eur J Med Chem. 2014;87:540–51.

    CAS  Article  Google Scholar 

  24. Bogush GH, Tracy MA, Zukoski CF IV. Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids. 1988;104(1):95–106.

    CAS  Article  Google Scholar 

  25. Bueno-Solano C, López-Cervantes J, Sánchez-Machado DI, Campas-Baypoli ON. HPLC determination of histamine, tyramine and amino acids in shrimp by-products. J Braz Chem Soc. 2012;23(1):96–102.

    CAS  Article  Google Scholar 

  26. Karakaplan M, Demetgül C, Serin S. Synthesis and thermal properties of a novel Schiff base oligomer with a double azomethine group and its Co(II) and Mn(II) complexes. J Macromol Sci A. 2008;45(5):406–14.

    CAS  Article  Google Scholar 

  27. Mazlan NF, Tan LL, Karim NHA, Heng LY, Reza MIH. Optical biosensing using newly synthesized metal salphen complexes: a potential DNA diagnostic tool. Sensors Actuators B Chem. 2017;242:176–88.

    CAS  Article  Google Scholar 

  28. Sukri SAM, Heng LY, Karim NHA. Synthesis, characterization and DNA-binding studies of hydroxyl functionalized platinum(II) salphen complexes. J Fluoresc. 2017;27(3):1009–23.

    Article  Google Scholar 

  29. Pinto SMA, Lourenço MAO, Calvete MJF, Abreu AR, Rosado MTS, Burrows HD, et al. Synthesis of new metalloporphyrin triads: efficient and versatile tripod optical sensor for the detection of amines. Inorg Chem. 2011;50(17):7916–8.

    CAS  Article  Google Scholar 

  30. Lee B, Scopelliti R, Severin K. A molecular probe for the optical detection of biogenic amines. Chem Commun. 2011;47(34):9639–41.

    CAS  Article  Google Scholar 

  31. Campbell NH, Karim NHA, Parkinson GN, Gunaratnam M, Petrucci V, Todd AK, et al. Molecular basis of structure–activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J Med Chem. 2012;55(1):209–22.

    CAS  Article  Google Scholar 

  32. Hu Y, Ma X, Zhang Y, Che Y, Zhao J. Detection of amines with fluorescent nanotubes: applications in the assessment of meat spoilage. ACS Sens. 2016;1(1):22–5.

    CAS  Article  Google Scholar 

  33. Ng SM, Koneswaran M, Narayanaswamy R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 2016;6:21624–61.

    CAS  Article  Google Scholar 

  34. Yan J, Springsteen G, Deeter S, Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron. 2004;60(49):11205–9.

    CAS  Article  Google Scholar 

  35. Gao L, Wang Y, Wang J, Huang L, Shi L, et al. A novel ZnII-sensitive fluorescent chemosensor assembled within aminopropyl-functionalized mesoporous SBA-15. Inorg Chem. 2006;45(17):6844–50.

    CAS  Article  Google Scholar 

  36. Nakamura M, Sanji T, Tanaka M. Fluorometric sensing of biogenic amines with aggregation-induced emission-active tetraphenylethenes. Chem Eur J. 2011;17(19):5344–9.

    CAS  Article  Google Scholar 

  37. English JT, Deore BA, Freund MS. Biogenic amine vapour detection using poly(anilineboronic acid) films. Sensors Actuators B Chem. 2006;115(2):666–71.

    CAS  Article  Google Scholar 

  38. Wang QH, Fang GZ, Liu YY, Zhang DD, Liu JM, Wang S. Fluorescent sensing probe for the sensitive detection of histamine based on molecular imprinting ionic liquid-modified quantum dots. Food Anal Methods. 2017;10(7):2585–92.

    Article  Google Scholar 

  39. Pérez S, Bartrolí J, Fàbregas E. Amperometric biosensor for the determination of histamine in fish samples. Food Chem. 2013;141(4):4066–72.

    Article  Google Scholar 

  40. Usman H, Bakar MHA, Hamzah AS, Salleh AB. A tapered fibre optics biosensor for histamine detection. Sens Rev. 2016;36(1):40–7.

    Article  Google Scholar 

  41. Harris DC. Quantitative chemical analysis. 7th ed. New York: Freeman; 2007.

    Google Scholar 

Download references


This work was supported by the Ministry of Higher Education Malaysia and Universiti Kebangsaan Malaysia through research grants FRGS/1/2016/STG01/UKM/02/1 and GUP-2017-067, respectively.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nurul Huda Abd Karim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 431 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahudin, M.A., Su’ait, M.S., Tan, L.L. et al. Zinc(II) salphen complex-based fluorescence optical sensor for biogenic amine detection. Anal Bioanal Chem 411, 6449–6461 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Histamine
  • Biogenic amines
  • Zinc(II) salphen
  • Optical sensor