Skip to main content
Log in

Determination of online quenching efficiency for an automated cellular microfluidic metabolomic platform using mass spectrometry based ATP degradation analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As microfluidic cell culture progresses, the need for robust and reproducible intracellular analyses grows. In particular, intracellular metabolites are subject to perturbation and degradation during the lysing process. The reliability of intracellular metabolomic analysis in microfluidic devices depends on the preservation of metabolite integrity during sample preparation and storage. Described here is a novel automated microfluidic system exhibiting the necessary rapid cellular lysis and quenching of enzymatic activity. Quenching efficiency was assessed using a novel ratiometric MALDI-MS-based assay of exogenous isotopic adenosine triphosphate (ATP) hydrolysis to isotopic adenosine diphosphate (ADP) as a marker of metabolite degradation. The lysis system of the microfluidic device was enhanced using a Peltier cooler to chill the lysate and quench aberrant enzymatic activity. Parameter optimization (flow rate, collection time, and temperature control) improved the endogenous and exogenous ADP/ATP ratios by 44.9% and 39.8% respectively consistent with traditional quenching techniques. The effects of chilling/quenching on metabolism were evaluated resulting in over 500 significant features compared to non-chilled from untargeted capillary LC-MS metabolomic analyses. These include increased levels of tryptophan, histidine, and pyruvate as well as decreased levels in UDP-N-acetylglucosamine. The results illustrate the need for both rapid lysis and quenching in microfluidic cell culture platforms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

EC:

Endothelial cell

DMEM:

Dulbecco’s modified eagle medium

NAD+:

Nicotinamide adenine dinucleotide

UDP:

Uridine diphosphate

MeOH:

Methanol

ACN:

Acetonitrile

References

  1. Ussher JR, Elmariah S, Gerszten RE, Dyck JRB. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol. 2016;68(25):2850.

    Article  CAS  PubMed  Google Scholar 

  2. Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol BioSyst. 2016;12(4):1090–105. https://doi.org/10.1039/C6MB00014B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem. 2005;24(4):285–94. https://doi.org/10.1016/j.trac.2004.11.021.

    Article  CAS  Google Scholar 

  4. Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. OMICS : a J Integr Biol. 2013;17(10):495–501. https://doi.org/10.1089/omi.2012.0090.

    Article  CAS  Google Scholar 

  5. Lorenz MA, Burant CF, Kennedy RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem. 2011;83(9):3406–14. https://doi.org/10.1021/ac103313x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yanes O, Tautenhahn R, Patti GJ, Siuzdak G. Expanding coverage of the metabolome for global metabolite profiling. Anal Chem. 2011;83(6):2152–61. https://doi.org/10.1021/ac102981k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimball E, Rabinowitz JD. Identifying decomposition products in extracts of cellular metabolites. Anal Biochem. 2006;358(2):273–80. https://doi.org/10.1016/j.ab.2006.07.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shehadul Islam M, Aryasomayajula A, Selvaganapathy RP. A review on macroscale and microscale cell lysis methods. Micromachines. 2017;8(3). https://doi.org/10.3390/mi8030083.

  9. Alshammari TM, Al-Hassan AA, Hadda TB, Aljofan M. Comparison of different serum sample extraction methods and their suitability for mass spectrometry analysis. Saudi Pharm J. 2015;23(6):689–97. https://doi.org/10.1016/j.jsps.2015.01.023.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pinu RF, Villas-Boas GS, Aggio R. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites. 2017;7(4). https://doi.org/10.3390/metabo7040053.

  11. Burns B, Mendz G, Hazell S. Methods for the measurement of a bacterial enzyme activity in cell lysates and extracts. Biological Procedures Online. 1998;1:17–26. https://doi.org/10.1251/bpo5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kraly JR, Holcomb RE, Guan Q, Henry CS. Review: microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta. 2009;653(1):23–35. https://doi.org/10.1016/j.aca.2009.08.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Filla LA, Sanders KL, Filla RT, Edwards JL. Automated sample preparation in a microfluidic culture device for cellular metabolomics. Analyst. 2016;141(12):3858–65. https://doi.org/10.1039/C6AN00237D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fitz JG. Regulation of cellular Atp release. Trans Am Clin Climatol Assoc. 2007;118:199–208.

    PubMed  PubMed Central  Google Scholar 

  15. Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 2011;6:1241. https://doi.org/10.1038/nprot.2011.366.

    Article  CAS  PubMed  Google Scholar 

  16. Luz JA, Hans E, Zeng A-P. Automated fast filtration and on-filter quenching improve the intracellular metabolite analysis of microorganisms. Eng Life Sci. 2014;14(2):135–42. https://doi.org/10.1002/elsc.201300099.

    Article  CAS  Google Scholar 

  17. León Z, García-Cañaveras JC, Donato MT, Lahoz A. Mammalian cell metabolomics: experimental design and sample preparation. ELECTROPHORESIS. 2013;34(19):2762–75. https://doi.org/10.1002/elps.201200605.

    Article  CAS  PubMed  Google Scholar 

  18. Kovarik ML, Allbritton NL. Measuring enzyme activity in single cells. Trends Biotechnol. 2011;29(5):222–30. https://doi.org/10.1016/j.tibtech.2011.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912.

    Article  CAS  PubMed  Google Scholar 

  20. Faijes M, Mars AE, Smid EJ. Comparison of quenching and extraction methodologies for metabolome analysis of lactobacillus plantarum. Microb Cell Factories. 2007;6(1):27. https://doi.org/10.1186/1475-2859-6-27.

    Article  CAS  Google Scholar 

  21. Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2012;403(6):1523–48. https://doi.org/10.1007/s00216-012-6039-y.

    Article  CAS  PubMed  Google Scholar 

  22. Kamerlin SCL, Warshel A. On the energetics of ATP hydrolysis in solution. J Phys Chem B. 2009;113(47):15692–8. https://doi.org/10.1021/jp907223t.

    Article  CAS  PubMed  Google Scholar 

  23. Mukhitov N, Yi L, Schrell AM, Roper MG. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler. J Chromatogr A. 2014;1367:154–60. https://doi.org/10.1016/j.chroma.2014.09.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–D17. https://doi.org/10.1093/nar/gkx1089.

    Article  CAS  PubMed  Google Scholar 

  25. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D, et al. Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem. 2014;86(14):6931–9. https://doi.org/10.1021/ac500734c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Groskreutz SR, Horner AR, Weber SG. Development of a 1.0 mm inside diameter temperature-assisted focusing precolumn for use with 2.1 mm inside diameter columns. J Chromatogr A. 2017;1523:193–203. https://doi.org/10.1016/j.chroma.2017.07.015.

    Article  CAS  PubMed  Google Scholar 

  27. Alley WR, Madera M, Mechref Y, Novotny MV. Chip-based reversed-phase liquid chromatography−mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem. 2010;82(12):5095–106. https://doi.org/10.1021/ac100131e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Dave Wood of the Protein Core Facility in the Saint Louis University Department of Biochemistry for his assistance with MALDI analyses.

Funding

This work is supported by the National Institutes of Health (USA): 1R15GM113153 (JLE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Edwards.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filla, L.A., Sanders, K.L., Coulton, J.B. et al. Determination of online quenching efficiency for an automated cellular microfluidic metabolomic platform using mass spectrometry based ATP degradation analysis. Anal Bioanal Chem 411, 6399–6407 (2019). https://doi.org/10.1007/s00216-019-02018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02018-3

Keywords

Navigation