Skip to main content

Advertisement

Log in

Comprehensive TCM molecular networking based on MS/MS in silico spectra with integration of virtual screening and affinity MS screening for discovering functional ligands from natural herbs

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Accessing the rich source of compounds from natural herbs for use in the pharmaceutical industry using conventional bioassay-based screening platforms has low efficiency and is cost-prohibitive. In this study, we developed a new method involving traditional Chinese medicine (TCM) molecular networking and virtual screening coupled with affinity mass spectrometry (MN/VS-AM) for the efficient discovery of herb-derived ligands. The in silico MS/MS fragmentation database (ISDB) generated by molecular networking of TCM can rapidly identify compounds in complex herb extracts and perform compound activity mapping. Additionally, the pre-virtual screening conveniently includes candidate herbs with potential bioactivity, while affinity MS screening completely eliminates the requirement for a tedious pure compound preparation at the initial screening phase. After applying this approach, two types of compounds, isoamylene flavanonols and 20(s)-protopanoxadio saponins, which were confirmed to interact with the small GTPase of Ras, were successfully identified from a dozen anti-cancer TCM herbs. The results demonstrate that the modified screening strategy dramatically improved the accuracy and throughput sensitivity of ligand screening from herbal extracts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111–29. https://doi.org/10.1038/nrd4510.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Liu Y, Guo Z, Feng J, Dong J, Fu Q, et al. The herbalome--an attempt to globalize Chinese herbal medicine. Anal Bioanal Chem. 2012;402(2):573–81. https://doi.org/10.1007/s00216-011-5533-y.

    Article  CAS  PubMed  Google Scholar 

  3. Gu S, Yin N, Pei J, Lai L. Understanding traditional Chinese medicine anti-inflammatory herbal formulae by simulating their regulatory functions in the human arachidonic acid metabolic network. Mol BioSyst. 2013;9(7):1931–8. https://doi.org/10.1039/c3mb25605g.

    Article  CAS  PubMed  Google Scholar 

  4. Hou R, Liu X, Xiang K, Chen L, Wu X, Lin W, et al. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chem. 2019;277:533–42. https://doi.org/10.1016/j.foodchem.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  5. Lin L, Zeng X. Toward continuous amperometric gas sensing in ionic liquids: rationalization of signal drift nature and calibration methods. Anal Bioanal Chem. 2018;410(19):4587–96. https://doi.org/10.1007/s00216-018-1090-y.

    Article  CAS  PubMed  Google Scholar 

  6. Shu Y, Liu Z, Zhao S, Song Z, He D, Wang M, et al. Integrated and global pseudotargeted metabolomics strategy applied to screening for quality control markers of Citrus TCMs. Anal Bioanal Chem. 2017;409(20):4849–65. https://doi.org/10.1007/s00216-017-0428-1.

    Article  CAS  PubMed  Google Scholar 

  7. Zhong Z, Liu LJ, Dong ZQ, Lu L, Wang M, Leung CH, et al. Structure-based discovery of an immunomodulatory inhibitor of TLR1-TLR2 heterodimerization from a natural product-like database. Chem Commun (Camb). 2015;51(56):11178–81. https://doi.org/10.1039/c5cc02728d.

    Article  CAS  Google Scholar 

  8. Schneider G. Virtual screening: an endless staircase? Nat Rev Drug Discov. 2010;9(4):273–6. https://doi.org/10.1038/nrd3139.

    Article  CAS  PubMed  Google Scholar 

  9. Fu X, Wang Z, Li L, Dong S, Li Z, Jiang Z, et al. Novel chemical ligands to Ebola virus and Marburg virus nucleoproteins identified by combining affinity mass spectrometry and metabolomics approaches. Sci Rep. 2016;6:29680. https://doi.org/10.1038/srep29680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song HP, Chen J, Hong JY, Hao H, Qi LW, Lu J, et al. A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking. Chem Commun (Camb). 2015;51(8):1494–7. https://doi.org/10.1039/c4cc08728c.

    Article  CAS  Google Scholar 

  11. Allard PM, Peresse T, Bisson J, Gindro K, Marcourt L, Pham VC, et al. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal Chem. 2016;88(6):3317–23. https://doi.org/10.1021/acs.analchem.5b04804.

    Article  CAS  PubMed  Google Scholar 

  12. Caesar LK, Kellogg JJ, Kvalheim OM, Cech RA, Cech NB. Integration of Biochemometrics and molecular networking to identify antimicrobials in Angelica keiskei. Planta Med. 2018;84(9–10):721–8. https://doi.org/10.1055/a-0590-5223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A. 2012;109(26):E1743–52. https://doi.org/10.1073/pnas.1203689109.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, Zhao X, et al. MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci U S A. 2013;110(28):E2611–20. https://doi.org/10.1073/pnas.1303471110.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang M, Carver JJ, Dorrestein PC, Bandeira N. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828–37. https://doi.org/10.1038/nbt.3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cox AD, Der CJ. Ras history: the saga continues. Small GTPases. 2010;1(1):2–27. https://doi.org/10.4161/sgtp.1.1.12178.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74. https://doi.org/10.1038/nrc3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277(5324):333–8.

    Article  CAS  PubMed  Google Scholar 

  19. Muraoka S, Shima F, Araki M, Inoue T, Yoshimoto A, Ijiri Y, et al. Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants. FEBS Lett. 2012;586(12):1715–8. https://doi.org/10.1016/j.febslet.2012.04.058.

    Article  CAS  PubMed  Google Scholar 

  20. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. https://doi.org/10.1002/jcc.21256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD. SYBYL line notation (SLN): a single notation to represent chemical structures, queries, reactions, and virtual libraries. J Chem Inf Model. 2008;48(12):2294–307. https://doi.org/10.1021/ci7004687.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta S, Bajaj AV. Extra precision glide docking, free energy calculation and molecular dynamics studies of 1,2-diarylethane derivatives as potent urease inhibitors. J Mol Model. 2018;24(9):261. https://doi.org/10.1007/s00894-018-3787-4.

    Article  CAS  PubMed  Google Scholar 

  23. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–49. https://doi.org/10.1021/jm0306430.

    Article  CAS  PubMed  Google Scholar 

  24. Schafer T, Kriege N, Humbeck L, Klein K, Koch O, Mutzel P. Scaffold Hunter: a comprehensive visual analytics framework for drug discovery. J Cheminform. 2017;9(1):28. https://doi.org/10.1186/s13321-017-0213-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6. https://doi.org/10.1038/nmeth.3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods. 2018;15(1):53–6. https://doi.org/10.1038/nmeth.4512.

    Article  CAS  PubMed  Google Scholar 

  27. He M, Yan X, Zhou J, Xie G. Traditional Chinese medicine database and application on the Web. J Chem Inf Comput Sci. 2001;41(2):273–7.

    Article  CAS  PubMed  Google Scholar 

  28. Liang H, Ruan H, Ouyang Q, Lai L. Herb-target interaction network analysis helps to disclose molecular mechanism of traditional Chinese medicine. Sci Rep. 2016;6:36767. https://doi.org/10.1038/srep36767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song HP, Wu SQ, Qi LW, Long F, Jiang LF, Liu K, et al. A strategy for screening active lead compounds and functional compound combinations from herbal medicines based on pharmacophore filtering and knockout/knockin chromatography. J Chromatogr A. 2016;1456:176–86. https://doi.org/10.1016/j.chroma.2016.06.009.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Yang YX, Li SY, Wang YL, Yang FQ, Chen H, et al. An ultrafiltration and high performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterizing thrombin inhibitors from Rhizoma Chuanxiong. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061-1062:421–9. https://doi.org/10.1016/j.jchromb.2017.07.050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the International Cooperation and Exchange of the National Natural Science Foundation of China (No. 81761168039), the National Key Research and Development Program of China (No. 2018YFC1704800, 2018YFC1704805, 2018YFC1704500, 2018YFC1704505) and the National Natural Science Foundation of China (No. 81673616).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Hou or Gang Bai.

Ethics declarations

No human participants or animals are involved in the research.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1537 kb)

ESM 2

(XLSX 2932 kb)

ESM 3

(XLSX 65 kb)

ESM 4

(XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Kim, U., Liu, J. et al. Comprehensive TCM molecular networking based on MS/MS in silico spectra with integration of virtual screening and affinity MS screening for discovering functional ligands from natural herbs. Anal Bioanal Chem 411, 5785–5797 (2019). https://doi.org/10.1007/s00216-019-01962-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01962-4

Keywords

Profiles

  1. Zhihua Wang