Skip to main content
Log in

A label-free fluorescence method based on terminal deoxynucleotidyl transferase and thioflavin T for detecting prostate-specific antigen

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Prostate-specific antigen (PSA) is the only biomarker for the diagnosis of prostate cancer. So the PSA screening test is very important due to the high occurrence of prostate cancer in men. In this work, a label-free fluorescent method was developed based on terminal deoxynucleotidyl transferase (TdT) and G–quadruplex–thioflavin T complex for detecting PSA. In the absence of PSA, the PSA aptamer can be used as the primer for TdT extension reactions, resulting in the formation of G-quadruplexes and generation of strong fluorescent signals. After the addition of PSA, the PSA–aptamer complex prevented the TdT extension reaction due to steric hindrance, thus resulting in a poor fluorescent signal. The assay showed a wide linear range (0.1 to 80 pg/mL) and a detection limit of 0.086 pg/mL (S/N = 3). It also has good specificity for PSA determination and gives satisfactory results when applied to biological samples. Conceivably, its merits such as good selectivity and high sensitivity indicate that the proposed method has a promising application potential in the clinical diagnosis and treatment of prostate cancer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Díaz-Fernández A, Miranda-Castro R, de-los-Santos-Álvarez N, Rodríguez EF, Lobo-Castañón MJ. Focusing aptamer selection on the glycan structure of prostate-specific antigen: toward more specific detection of prostate cancer. Biosens Bioelectron 2019;128:83–90.

  2. Kong RM, Ding L, Wang ZJ, You JM, Qu FL. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem. 2015;407:369–77.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Yuan PX, Wang AJ, Luo XL, Xue YD, Zhang L, et al. A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron. 2019;126:187–92.

    Article  CAS  PubMed  Google Scholar 

  4. Wei B, Mao K, Liu N, Zhang M, Yang ZG. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron. 2018;121:41–6.

    Article  CAS  PubMed  Google Scholar 

  5. Cao JT, Yang JJ, Zhao LZ, Wang YL, Wang H, Liu YM, et al. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens Bioelectron. 2018;99:92–8.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Q, Lin YX, Zhang KY, Li MJ, Tang DP. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron. 2018;101:146–52.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang KY, Lv SZ, Lin ZZ, Li MJ, Tang DP. Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron. 2018;101:159–66.

    Article  CAS  PubMed  Google Scholar 

  8. Barbosa AI, Wichers JH, van Amerongen A, Reis NM. Towards one-step quantitation of prostate-specific antigen (PSA) in microfluidic devices: feasibility of optical detection with nanoparticle labels. Bionanoscience. 2017;7:718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Guo XY, Liu W, Zhang L. Paper-based fluorometric immunodevice with quantum-dot labeled antibodies for simultaneous detection of carcinoembryonic antigen and prostate specific antigen. Microchim Acta 2019;186:112.

  10. Zhang LJ, Luo ZB, Zeng RJ, Zhou Q, Tang DP. All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen. Biosens Bioelectron. 2019;134:1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Lv SZ, Zhang KY, Zeng YY, Tang DP. Double photosystems-based ‘Z-Scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker. Anal Chem. 2018;90:7086–93.

  12. Tian CY, Wang L, Luan F, Zhuang XM. An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta. 2019;191:103–8.

    Article  CAS  PubMed  Google Scholar 

  13. Gao ZQ, Lv SZ, Xu MD, Tang DP. High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst. 2017;142:911–7.

    Article  CAS  PubMed  Google Scholar 

  14. Shao K, Wang B, Nie A, Ye SY, Ma J, Li ZG, et al. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/au/ G-quadruplex. Biosens Bioelectron. 2018;118:160–6.

    Article  CAS  PubMed  Google Scholar 

  15. Yazdani Z, Yadegari H, Heli H. A molecularly imprinted electrochemical nanobiosensor for prostate specific antigen determination. Anal Biochem. 2019;566:116–25.

    Article  CAS  PubMed  Google Scholar 

  16. Li YY, Khan MS, Tian LH, Liu L, Hu LH, Fan DW, et al. An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes. Anal Bioanal Chem. 2017;409:3245–51.

    Article  CAS  PubMed  Google Scholar 

  17. Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, et al. Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta. 2017;184:3049–67.

    Article  CAS  Google Scholar 

  18. Fang BY, An J, Liu B, Zhao YD. Hybridization induced fluorescence enhanced DNA-ag nanocluster/aptamer probe for detection of prostate-specific antigen. Colloids Surf B Biointerfaces. 2019;175:358–64.

    Article  CAS  PubMed  Google Scholar 

  19. Wu KF. Ma CB, Zhao H, He HL. Chen HC Label-free G-quadruplex aptamer fluorescence assay for ochratoxin A using a thioflavin T probe Toxins. 2018;10:198.

    CAS  Google Scholar 

  20. Tang ZW, Chen HT, He HL, Ma CB. Assays for alkaline phosphatase activity: progress and prospects. Trends Anal Chem. 2019;113:32–43.

    Article  CAS  Google Scholar 

  21. Wu KF, Ma CB, Zhao H, Chen MJ, Deng ZY. Sensitive aptamer-based fluorescene assay for ochratoxin a based on RNase H signal amplification. Food Chem. 2019;277:273–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao H, Xiang XY, Chen MJ, Ma CB. Aptamer-based fluorometric ochratoxin a assay based on photoinduced electron transfer. Toxins. 2019;11:65.

    Article  CAS  PubMed Central  Google Scholar 

  23. Chi BZ, Liang RP, Yuan YH, Zhang L, Li ZM, Qiu JD. Luminescence determination of microRNAs based on the use of terbium (III) sensitized with an enzyme-activated guanine-rich nucleotide. Microchim Acta. 2018;185:280.

    Article  CAS  Google Scholar 

  24. Tang ZW, Zhang HF, Ma CB, Gu P, Zhang GH, Wu KF, et al. Colorimetric determination of the activity of alkaline phosphatase based on the use of cu (II)-modulated G-quadruplex-based DNAzymes. Microchim Acta. 2018;185:109.

    Article  CAS  Google Scholar 

  25. Zhao H, Ma CB, Chen MJ. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T. Mol Cell Probes. 2019;43:29–33.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Lei S, Zou LN, Li GP, Xu LL, Ye BX. A label-free and double recognition–amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens Bioelectron. 2019;131:113–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ma CB, Wu KF, Zhao H, Liu HS, Wang KM, Xia K. Fluorometric aptasensor of ochratoxin a based on the use of graphene oxide and RNase H-aided amplification. Microchim Acta. 2018;185:347.

    Article  CAS  Google Scholar 

  28. Gu P, Zhang GH, Deng ZY, Tang ZW, Zhang HF, Khusbu FY, Ket al. A novel label-free colorimetric detection of L-histidine using Cu2+-modulated G-quadruplex-based DNAzymes. Spectrochim Acta A Mol Biomol Spectrosc 2018;203:195–200.

  29. Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar PI, Bhasikuttan AC. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J Am Chem Soc. 2013;135:367–76.

    Article  CAS  PubMed  Google Scholar 

  30. Khusbu FY, Zhou X, Chen HC, Ma CB, Wang KM. Thioflavin T as a fluorescence probe for biosensing applications. Trends Anal Chem. 2018;109:1–18.

    Article  CAS  Google Scholar 

  31. Xu HY, Geng FH, Jiang XY, Shao CY, Wang YX, Wang KF, et al. Design of metal-ion-triggered assembly of label-free split G-quadruplex/duplex DNA for turn-on detection of Hg2+ in fetal calf serum. Sens Actuators B Chem. 2018;255:1024–30.

    Article  CAS  Google Scholar 

  32. Liu SG, Luo D, Han L, Li NB, Luo HQ. A hybrid material composed of guanine-rich single stranded DNA and cobalt (III) oxyhydroxide (CoOOH) nanosheets as a fluorescent probe for ascorbic acid via formation of a complex between G-quadruplex and thioflavin T. Microchim Acta. 2019;186:156.

    Article  CAS  Google Scholar 

  33. Chen MJ, Deng ZY, Ma CB, Zhao H, Wu KF, Wang KM. A sensitive fluorescence method for the detection of streptavidin based on target-induced DNA machine amplification. Anal Methods. 2018;10:1870–4.

    Article  CAS  Google Scholar 

  34. Li YN, Wang JY, Zhang B, He Y, Wang JP, Wang S. A rapid fluorometric method for determination of aflatoxin B1 in plant-derived food by using a thioflavin T-based aptasensor. Microchim Acta. 2019;186:214.

    Article  CAS  Google Scholar 

  35. Tang XX, Wu KF, Zhao H, Chen MJ, Ma CB. A label-free fluorescent assay for the rapid and sensitive detection of adenosine deaminase activity and inhibition. Sensors. 2018;18:2441.

    Article  CAS  Google Scholar 

  36. Wu KF, Ma CB, Deng ZY, Fang N, Tang ZW, Zhu XX, et al. Label-free and nicking enzyme-assisted fluorescence signal amplification for RNase H determination based on a G-quadruplexe/thioflavin T complex. Talanta. 2018;182:142–7.

    Article  CAS  PubMed  Google Scholar 

  37. Liu Z, Li W, Nie Z, Peng F, Huang Y, Yao S. Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity. Chem Comm. 2014;50:6875–8.

    Article  CAS  PubMed  Google Scholar 

  38. Cao Y, Wang ZH, Cao JP, Mao XX, Chen GF, Zhao J. A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: application to the detection of thrombin and the vascular endothelial growth factor. Microchim Acta. 2017;184:3697–704.

    Article  CAS  Google Scholar 

  39. You PY, Li FC, Liu MH, Chan YH. Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood. ACS Appl Mater Interfaces. 2019;11:9841–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hwang DG, Chae YM, Choi N, Cho IJ, Kang JY, Lee SH. Label-free detection of prostate specific antigen (PSA) using a bridge-shaped PZT resonator. Microsyst Technol. 2017;23:1207–14.

    Article  CAS  Google Scholar 

  41. Cai GN, Yu ZZ, Ren RG, Tang DP. Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sens. 2018;3:632–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Q, Lin YX, Shu J, Zhang KY, Yu ZZ, Tang DP. Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosens Bioelectron. 2017;98:15–21.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang KY, Lv SZ, Lin ZZ, Tang DP. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron. 2017;95:34–40.

    Article  CAS  PubMed  Google Scholar 

  44. Sun YJ, Wang CY, Zhang H, Zhang YL, Zhang GJ. A non-enzymatic and label-free fluorescence bioassay for ultrasensitive detection of PSA. Molecules. 2019;24:831.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by State Key Laboratory of Chemo/ Biosensing and Chemometrics, Hunan University (2017006), The Research Innovation Program for Graduates of Central South University (2018zzts384, 2018zzts399, 2019zzts453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changbei Ma.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

The study was approved by the Ethics Committee of Central South University, Changsha, China. All people had given informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Ma, C., Yan, Y. et al. A label-free fluorescence method based on terminal deoxynucleotidyl transferase and thioflavin T for detecting prostate-specific antigen. Anal Bioanal Chem 411, 5779–5784 (2019). https://doi.org/10.1007/s00216-019-01958-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01958-0

Keywords

Navigation