Skip to main content

Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification


The design and fabrication of a continuous-flow μPCR device with very short amplification time and low power consumption are presented. Commercially available, 4-layer printed circuit board (PCB) substrates are employed, with in-house designed yet industrially manufactured embedded Cu micro-resistive heaters lying at very close distance from the microfluidic network, where DNA amplification takes place. The 1.9-m-long microchannel in combination with desirably high flow velocities (for fast amplification) challenged the robustness of the sealing that was overcome with the development of a novel bonding method rendering the microdevice robust even at extreme pressure drops (12 bars). The proposed fabrication methods are PCB compatible, allowing for mass and reliable production of the μPCR device in the established PCB industry. The μPCR chip was successfully validated during the amplification of two different DNA fragments (and with different target DNA copies) corresponding to the exon 20 of the BRCA1 gene, and to the plasmid pBR322, a commonly used cloning vector in E. coli. Successful DNA amplification was demonstrated at total reaction times down to 2 min, with a power consumption of 2.7 W, rendering the presented μPCR one of the fastest and lowest power-consuming devices, suitable for implementation in low-resource settings. Detailed numerical calculations of the DNA residence time distributions, within an acceptable temperature range for denaturation, annealing, and extension, performed for the first time in the literature, provide useful information regarding the actual on-chip PCR protocol and justify the maximum volumetric flow rate for successful DNA amplification. The calculations indicate that the shortest amplification time is achieved when the device is operated at its enzyme kinetic limit (i.e., extension rate).

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest developments in micro total analysis systems. Anal Chem. 2010;82(12):4830–47.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Trietsch SJ, Hankemeier T, van der Linden HJ. Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review. Chemometr Intell Lab. 2011;108(1):64–75.

    CAS  Article  Google Scholar 

  3. 3.

    Romao VC, Martins SAM, Germano J, Cardoso FA, Cardoso S, Freitas PP. Lab-on-chip devices: gaining ground losing size. ACS Nano. 2017;11(11):10659–64.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ahmad F, Hashsham SA. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review. Anal Chim Acta. 2012;733:1–15.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Chouler J, Di Lorenzo M. Water quality monitoring in developing countries; can microbial fuel cells be the answer? Biosensors. 2015;5(3):450–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis. 2004;38(Supplement_3):S127–S34.

    PubMed  Article  Google Scholar 

  7. 7.

    Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–9.

    PubMed  Article  Google Scholar 

  8. 8.

    Zhao X, Lin C-W, Wang J, Oh DH. Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol. 2014;24(3):297–312.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Pandey CM, Augustine S, Kumar S, Kumar S, Nara S, Srivastava S, et al. Microfluidics based point-of-care diagnostics. Biotechnol Adv. 2018;13(1):1700047.

    Google Scholar 

  10. 10.

    Bruijns B, van Asten A, Tiggelaar R, Gardeniers H. Microfluidic devices for forensic DNA analysis: a review. Biosensors. 2016;6(3):41.

    PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Khalid N, Kobayashi I, Nakajima M. Recent lab-on-chip developments for novel drug discovery. Wiley Interdiscip Rev Syst Biol Med. 2017;9(4):e1381.

    Article  Google Scholar 

  12. 12.

    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H, editors. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction Cold Spring Harbor symposia on quantitative biology. Cold Spring: Harbor Laboratory Press; 1986.

    Google Scholar 

  13. 13.

    Roper MG, Easley CJ, Landers JP. Advances in polymerase chain reaction on microfluidic chips. Anal Chem. 2005;77(12):3887–94.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Zhang C, Xu J, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnol Adv. 2006;24(3):243–84.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zhang C, Xing D. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res. 2007;35(13):4223–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Park S, Zhang Y, Lin S, Wang T-H, Yang S. Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv. 2011;29(6):830–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Zhang Y, Ozdemir P. Microfluidic DNA amplification—a review. Anal Chim Acta. 2009;638(2):115–25.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Northrup MA, Gonzalez C, Hadley D, Hills RF, Landre P, Lehew S, et al., editors. A mems-based miniature DNA analysis system. Transducers '95 1995 25-29 June 1995.

  19. 19.

    Xiang Q, Xu B, Fu R, Li D. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Biomed Microdevices. 2005;7(4):273–9.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kopp MU, De Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280(5366):1046–8.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Wang H, Chen J, Zhu L, Shadpour H, Hupert ML, Soper SA. Continuous flow thermal cycler microchip for DNA cycle sequencing. Anal Chem. 2006;78(17):6223–31.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Moschou D, Vourdas N, Kokkoris G, Papadakis G, Parthenios J, Chatzandroulis S, et al. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sensors Actuators B Chem. 2014;199:470–8.

    CAS  Article  Google Scholar 

  23. 23.

    Sun Y, Kwok Y-C, Foo-Peng Lee P, Nguyen N-T. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip. Anal Bioanal Chem. 2009;394(5):1505–8.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Tsung-Min H, Ching-Hsing L, Gwo-Bin L, Chia-Sheng L, Fu-Chun H. A micromachined low-power-consumption portable PCR system. J Med Biol Eng. 2006;26(1):43–9.

    Google Scholar 

  25. 25.

    Papadopoulos VE, Kokkoris G, Kefala IN, Tserepi A. Comparison of continuous-flow and static-chamber μPCR devices through a computational study: the potential of flexible polymeric substrates. Microfluid Nanofluid. 2015;19(4):867–82.

    CAS  Article  Google Scholar 

  26. 26.

    Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32(7):347–50.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Mohammed MI, Haswell S, Gibson I. Lab-on-a-chip or chip-in-a-lab: challenges of commercialization lost in translation. Proc Technol. 2015;20(Supplement C):54–9.

    Article  Google Scholar 

  28. 28.

    Duchesne L, Lacombe K. Innovative technologies for point-of-care testing of viral hepatitis in low-resource and decentralized settings. J Viral Hepat. 2018;25(2):108–17.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Walsh DI, Kong DS, Murthy SK, Carr PA. Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol. 2017;35(5):383–92.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Merkel T, Graeber M, Pagel L. New technology for fluidic microsystems based on PCB technology. Sens Actuators A Phys. 1999;77(2):98–105.

    CAS  Article  Google Scholar 

  31. 31.

    Gaßmann S, Ibendorf I, Pagel L. Realization of a flow injection analysis in PCB technology. Sens Actuators A Phys. 2007;133(1):231–5.

    Article  CAS  Google Scholar 

  32. 32.

    Aracil C, Perdigones F, Moreno JM, Luque A, Quero JM. Portable lab-on-PCB platform for autonomous micromixing. Microelectron Eng. 2015;131:13–8.

    CAS  Article  Google Scholar 

  33. 33.

    Moschou D, Tserepi A. The lab-on-PCB approach: tackling the μTAS commercial upscaling bottleneck. Lab Chip. 2017;17(8):1388–405.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Nguyen N-T, Huang X. Miniature valveless pumps based on printed circuit board technique. Sens Actuators A Phys. 2001;88(2):104–11.

    CAS  Article  Google Scholar 

  35. 35.

    Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol. 2014;98(3):1001–9.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Li J, Wang Y, Dong E, Chen H. USB-driven microfluidic chips on printed circuit boards. Lab Chip. 2014;14(5):860–4.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Metz S, Holzer R, Renaud P. Polyimide-based microfluidic devices. Lab Chip. 2001;1(1):29–34.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Mavraki E, Moschou D, Kokkoris G, Vourdas N, Chatzandroulis S, Tserepi A. A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate. Procedia Eng. 2011;25:1245–8.

    CAS  Article  Google Scholar 

  39. 39.

    Wangler N, Gutzweiler L, Kalkandjiev K, Müller C, Mayenfels F, Reinecke H, et al. High-resolution permanent photoresist laminate TMMF for sealed microfluidic structures in biological applications. J Micromech Microeng. 2011;21(9):095009.

    Article  CAS  Google Scholar 

  40. 40.

    Wu LL, Marshall LA, Babikian S, Han CM, Santiago JG, Bachman M, editors. A printed circuit board based microfluidic system for point-of-care diagnostics applications. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS) 2011.

  41. 41.

    Wu LL, Babikian S, Li GP, Bachman M, editors. Microfluidic printed circuit boards. Proceedings - Electronic Components and Technology Conference 2011.

  42. 42.

    Vasilakis N, Moschou D, Carta D, Morgan H, Prodromakis T. Long-lasting FR-4 surface hydrophilisation towards commercial PCB passive microfluidics. Appl Surf Sci. 2016;368:69–75.

    CAS  Article  Google Scholar 

  43. 43.

    Papadopoulos VE, Kefala IN, Kaprou G, Kokkoris G, Moschou D, Papadakis G, et al. A passive micromixer for enzymatic digestion of DNA. Microelectron Eng. 2014;124:42–6.

    CAS  Article  Google Scholar 

  44. 44.

    Kefala IN, Papadopoulos VE, Karpou G, Kokkoris G, Papadakis G, Tserepi A. A labyrinth split and merge micromixer for bioanalytical applications. Microfluid Nanofluid. 2015;19(5):1047–59.

    CAS  Article  Google Scholar 

  45. 45.

    Kaprou G, Papadakis G, Papageorgiou D, Kokkoris G, Papadopoulos V, Kefala I, et al. Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics. Microsyst Technol. 2016;22(7):1529–34.

    CAS  Article  Google Scholar 

  46. 46.

    Temiz Y, Lovchik RD, Kaigala GV, Delamarche E. Lab-on-a-chip devices: how to close and plug the lab? Microelectron Eng. 2015;132:156–75.

    CAS  Article  Google Scholar 

  47. 47.

    Becker H, Gärtner C. Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem. 2008;390(1):89–111.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kaprou G, Papadakis G, Kokkoris G, Papadopoulos V, Kefala I, Papageorgiou D, et al., editors. Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics. Progress in Biomedical Optics and Imaging - Proceedings of SPIE; 2015.

  49. 49.

    Cao Q, Kim M-C, Klapperich C. Plastic microfluidic chip for continuous-flow polymerase chain reaction: simulations and experiments. Biotechnol Adv. 2011;6(2):177–84.

    CAS  Google Scholar 

  50. 50.

    Ltd E. Technical terms and abbreviations. Available from:

  51. 51.

    Tserepi A., Chatzandroulis S., Kaprou G., Kokkoris G., Ellinas K., Papageorgiou D., inventorMicrofluidic reactors and process for their production. Greece patent GRA 20170100305 2017 30.06.2017.

  52. 52.

    Tserepi A., Chatzandroulis S., Kaprou G., Kokkoris G., Ellinas K., Papageorgiou D., inventorMicrofluidic reactors and process for their production patent 18386020.4-1101. 2018 29.06.18.

  53. 53.

    Vorkas PA, Christopoulos K, Kroupis C, Lianidou ES. Mutation scanning of exon 20 of the BRCA1 gene by high-resolution melting curve analysis. Clin Biochem. 2010;43(1–2):178–85.

    CAS  PubMed  Article  Google Scholar 

  54. 54.


  55. 55.

    Leonard WF. Yu HY. Thermoelectric power of thin copper films. J Appl Phys. 1973;44(12):5320–3.

    CAS  Article  Google Scholar 

  56. 56.

    Kim YS. Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sensors Actuators B Chem. 2006;114(1):410–7.

    CAS  Article  Google Scholar 

  57. 57.

    Shen K, Chen X, Guo M, Cheng J. A microchip-based PCR device using flexible printed circuit technology. Sensors Actuators B Chem. 2005;105(2):251–8.

    CAS  Article  Google Scholar 

  58. 58.

    Wheeler EK, Benett W, Stratton P, Richards J, Chen A, Christian A, et al. Convectively driven polymerase chain reaction thermal cycler. Anal Chem. 2004;76(14):4011–6.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Jiang L, Mancuso M, Lu Z, Akar G, Cesarman E, Erickson D. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep. 2014;4:4137.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Hashimoto M, Chen P-C, Mitchell MW, Nikitopoulos DE, Soper SA, Murphy MC. Rapid PCR in a continuous flow device. Lab Chip. 2004;4(6):638–45.

    CAS  PubMed  Article  Google Scholar 

Download references


The authors would like to thank Drs. S.E. Kakambakos and P.S. Petrou at IPRETEA, NCSR “Demokritos,” for providing access to their roll laminator.


This research was financially supported by the (1) FP7 “Love Wave Fully Integrated Lab-on-chip Platform for Food Pathogen Detection”—LOVE FOOD project (Contract No 317742)—and (2) Horizon 2020-EU 2.1.1, Project ID: 68768, “LOVEFOOD2Market—A portable MicroNanoBioSystem and Instrument for ultra-fast analysis of pathogens in food: Innovation from LOVE-FOOD lab prototype to a pre-commercial instrument” (

Author information



Corresponding authors

Correspondence to George Kokkoris or Angeliki Tserepi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 514 kb)


(FLV 3074 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaprou, G.D., Papadopoulos, V., Papageorgiou, D.P. et al. Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification. Anal Bioanal Chem 411, 5297–5307 (2019).

Download citation


  • MicroPCR
  • Continuous-flow
  • PCB substrates
  • Computational fluid dynamics
  • Heat transport
  • Residence time distribution