Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 20, pp 5139–5148 | Cite as

Ultrahigh-throughput absolute quantitative analysis of linezolid in human plasma by direct analysis in real time mass spectrometry without chromatographic separation and its application to a pharmacokinetic study

  • Lei Yin
  • Yixuan Feng
  • Jin Tong
  • Zhiqiong Guo
  • Yuyao Zhang
  • Qi Zhang
  • Yantong Sun
  • J. Paul Fawcett
  • Jingkai GuEmail author
Research Paper

Abstract

Therapeutic drug monitoring (TDM) is necessary in the clinical management of linezolid to improve its efficacy and reduce the risk of time- and dose-dependent toxicity. A novel and ultrahigh-throughput analytical method for the determination of linezolid in human plasma was developed based on direct analysis in real-time tandem mass spectrometry (DART-MS/MS) without chromatographic separation. After solid-phase extraction with Waters Oasis HLB, the linezolid and internal standard linezolid-d3 were detected by positive ion electrospray ionization followed by multiple reaction monitoring (MRM) of the transition at m/z 338.1 → 296.2 and 341.2 → 297.3, respectively. The use of DART-MS obviates the need for chromatographic separation and allowed determination of linezolid in a total run time of only 24 s per sample. The method was linear in the concentration range 0.20–25 μg mL−1 with intraday and interday precision <14.5% and accuracy ranging from −3.85% to 12.7%. The method was successfully applied to a pharmacokinetic study of linezolid in healthy male volunteers after oral administration of a 600 mg tablet. DART-MS/MS provides a rapid and sensitive method for the determination of linezolid that does not require chromatographic separation. It is eminently suitable to meet the high-throughput challenge of clinical TDM.

Graphical abstract

Keywords

LC-MS/MS DART Linezolid High throughput Pharmacokinetics 

Notes

Funding information

This research was supported by the National Natural Science Foundation of China (Grant Nos. 81603182, 81430087, 81673396, 81872831, 81473142, 81773692), Science and Technology Development Plan Project of Jilin Province (20190103082JH), the Science and Technology Major Specialized Projects for “significant new drugs creation” of the 12th 5-year plan (2012ZX09303-015, 2014ZX09303303), and the National Key Technology R&D Program of the Ministry of Science and Technology (2012BAI30B00), CERS-1-70 (CERS-China Equipment and Education Resources System).

Compliance with ethical standards

The clinical protocol was approved by the Ethics Committee of the First Hospital of Jilin University, China.

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

216_2019_1891_MOESM1_ESM.pdf (161 kb)
ESM 1 (PDF 161 kb)

References

  1. 1.
    Kempker RR, Heinrichs MT, Nikolaishvili K, Sabulua I, Bablishvili N, Gogishvili S, et al. A comparison of linezolid lung tissue concentrations among patients with drug-resistant tuberculosis. Eur Respir J. 2018;51(2).  https://doi.org/10.1183/13993003.02166-2017.
  2. 2.
    Yang W, Liu J, Blazekovic B, Sun Y, Ma S, Ren C, et al. In vitro antibacterial effects of Tanreqing injection combined with vancomycin or linezolid against methicillin-resistant Staphylococcus aureus. BMC Complement Altern Med. 2018;18(1):169.  https://doi.org/10.1186/s12906-018-2231-8.CrossRefGoogle Scholar
  3. 3.
    Santin M. Linezolid for multidrug-resistant tuberculosis: how should we approach it? Enferm Infecc Microbiol Clin. 2016;34(2):83–4.  https://doi.org/10.1016/j.eimc.2015.12.002.CrossRefGoogle Scholar
  4. 4.
    Bolhuis MS, van Altena R, van Hateren K, de Lange WCM, Greijdanus B, Uges DRA, et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(8):3676–80.  https://doi.org/10.1128/Aac.00558-13.CrossRefGoogle Scholar
  5. 5.
    Bolhuis MS, van Altena R, van Hateren K, de Lange WC, Greijdanus B, Uges DR, et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(8):3676–80.  https://doi.org/10.1128/AAC.00558-13.CrossRefGoogle Scholar
  6. 6.
    Inoue T, Tsunoda A, Nishimoto E, Nishida K, Komatsubara Y, Onoe R, et al. Successful use of linezolid for refractory Mycobacterium abcessus infection: a case report. Respir Med Case Rep. 2018;23:43–5.  https://doi.org/10.1016/j.rmcr.2017.11.007.Google Scholar
  7. 7.
    Shi J, Jiang Y, Zhao Y. Promising in vitro and in vivo inhibition of multidrug-resistant Helicobacter pylori by linezolid and novel oxazolidinone analogues. J Glob Antimicrob Resist. 2016;7:106–9.  https://doi.org/10.1016/j.jgar.2016.07.016.CrossRefGoogle Scholar
  8. 8.
    Zhao W, Zheng M, Wang B, Mu X, Li P, Fu L, et al. Interactions of linezolid and second-line anti-tuberculosis agents against multidrug-resistant Mycobacterium tuberculosis in vitro and in vivo. Int J Infect Dis. 2016;52:23–8.  https://doi.org/10.1016/j.ijid.2016.08.027.CrossRefGoogle Scholar
  9. 9.
    Guidelines for the management, of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416.  https://doi.org/10.1164/rccm.200405-644ST.
  10. 10.
    Marchese A, Schito GC. The oxazolidinones as a new family of antimicrobial agent. Clin Microbiol Infect. 2001;7:66–74.  https://doi.org/10.1046/j.1469-0691.2001.00060.x.CrossRefGoogle Scholar
  11. 11.
    Livermore DM. Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother. 2003;51:9–16.  https://doi.org/10.1093/jac/dkg249.CrossRefGoogle Scholar
  12. 12.
    Ochi F, Tauchi H, Nagai K, Moritani K, Tezuka M, Jogamoto T, et al. Therapeutic effect of linezolid in children with health care-associated meningitis or ventriculitis. Clin Pediatr. 2018;57(14):1672–6.  https://doi.org/10.1177/0009922818803399.CrossRefGoogle Scholar
  13. 13.
    Nuermberger E. Evolving strategies for dose optimization of linezolid for treatment of tuberculosis. Int J Tuberc Lung Dis. 2016;20(12):48–51.  https://doi.org/10.5588/ijtld.16.0113.CrossRefGoogle Scholar
  14. 14.
    Sazdanovic P, Jankovic SM, Kostic M, Dimitrijevic A, Stefanovic S. Pharmacokinetics of linezolid in critically ill patients. Expert Opin Drug Metab Toxicol. 2016;12(6):595–600.  https://doi.org/10.1517/17425255.2016.1170807.CrossRefGoogle Scholar
  15. 15.
    Dong H, Wang X, Dong Y, Lei J, Li H, You H, et al. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents. 2011;38(4):296–300.  https://doi.org/10.1016/j.ijantimicag.2011.05.007.CrossRefGoogle Scholar
  16. 16.
    Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with Gram-positive infections. Int J Antimicrob Agents. 2013;41(6):586–9.  https://doi.org/10.1016/j.ijantimicag.2013.02.020.CrossRefGoogle Scholar
  17. 17.
    Vinh DC, Rubinstein E. Linezolid: a review of safety and tolerability. J Infect. 2009;59(Suppl 1):S59–74.  https://doi.org/10.1016/S0163-4453(09)60009-8.CrossRefGoogle Scholar
  18. 18.
    Sotgiu G, Centis R, D'Ambrosio L, Alffenaar JW, Anger HA, Caminero JA, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42.  https://doi.org/10.1183/09031936.00022912.CrossRefGoogle Scholar
  19. 19.
    Tse-Chang A, Kunimoto D, Der E, Ahmed R. Assessment of linezolid efficacy, safety and tolerability in the treatment of tuberculosis: a retrospective case review. Can J Infect Dis Med Microbiol. 2013;24(3):e50–2.CrossRefGoogle Scholar
  20. 20.
    Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012;67(8):2034–42.  https://doi.org/10.1093/jac/dks153.CrossRefGoogle Scholar
  21. 21.
    Cattaneo D, Alffenaar JW, Neely M. Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones. Expert Opin Drug Metab Toxicol. 2016;12(5):533–44.  https://doi.org/10.1517/17425255.2016.1166204.CrossRefGoogle Scholar
  22. 22.
    Pea F, Furlanut M, Cojutti P, Cristini F, Zamparini E, Franceschi L, et al. Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother. 2010;54(11):4605–10.  https://doi.org/10.1128/Aac.00177-10.CrossRefGoogle Scholar
  23. 23.
    Tobias PE, Varughese CA, Hanson AP, Gurnani PK. A case of linezolid induced toxicity. J Pharm Pract. 2018:897190018782787.  https://doi.org/10.1177/0897190018782787.
  24. 24.
    Zhu H, Guo SC, Liu ZQ, Wang B, Fu L, Chu NH, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis. 2018;22(8):931–6.  https://doi.org/10.5588/ijtld.17.0648.CrossRefGoogle Scholar
  25. 25.
    Castoldi S, Cozzi V, Baldelli S, Fucile S, Clementi E, Cattaneo D. Comparison of the Arktm immunoassay with Hplc-Uv for therapeutic drug monitoring of linezolid. Ther Drug Monit. 2017.  https://doi.org/10.1097/FTD.0000000000000473.
  26. 26.
    Ferrone V, Carlucci M, Cotellese R, Raimondi P, Cichella A, Di Marco L, et al. Development of a dried blood spot HPLC-PDA method for the analysis of linezolid and ciprofloxacin in hospital-acquired pneumonia patients. Drug Test Anal. 2017;9(10):1611–9.  https://doi.org/10.1002/dta.2195.CrossRefGoogle Scholar
  27. 27.
    Fortuna S, De Pascale G, Ragazzoni E, Antonelli M, Navarra P. Validation of a new HPLC-UV method for determination of the antibiotic linezolid in human plasma and in bronchoalveolar lavage. Biomed Chromatogr. 2013;27(11):1489–96.  https://doi.org/10.1002/bmc.2947.CrossRefGoogle Scholar
  28. 28.
    Patel NS, Tandel FB, Patel YD, Thakkar KB. Development and validation of stability-indicating HPLC method for simultaneous estimation of cefixime and linezolid. Indian J Pharm Sci. 2014;76(6):535–40.Google Scholar
  29. 29.
    Swoboda S, Ober M, Anagnostakos K, Geiss HK, Weigand MA, Hoppe-Tichy T. A simple isocratic HPLC assay to determine linezolid concentrations in different biomatrices for in vivo and in vitro studies. Clin Chem Lab Med. 2007;45(8):1019–22.  https://doi.org/10.1515/CCLM.2007.247.CrossRefGoogle Scholar
  30. 30.
    Tobin CM, Sunderland J, Lovering AM, MacGowan AP. A high performance liquid chromatography (HPLC) assay for linezolid in continuous ambulatory peritoneal dialysis fluid (CAPDF). J Antimicrob Chemother. 2003;51(4):1041–2.  https://doi.org/10.1093/jac/dkg177.CrossRefGoogle Scholar
  31. 31.
    Castoldi S, Cozzi V, Baldelli S, Fucile S, Clementi E, Cattaneo D. Comparison of the ARK immunoassay with high-performance liquid chromatography with ultraviolet detection for therapeutic drug monitoring of linezolid. Ther Drug Monit. 2018;40(1):140–3.  https://doi.org/10.1097/FTD.0000000000000473.Google Scholar
  32. 32.
    Zander J, Maier B, Zoller M, Teupser D, Vogeser M. Quantification of linezolid in serum by LC-MS/MS using semi-automated sample preparation and isotope dilution internal standardization. Clin Chem Lab Med. 2014;52(3):381–9.  https://doi.org/10.1515/cclm-2013-0594.CrossRefGoogle Scholar
  33. 33.
    Paal M, Zoller M, Schuster C, Vogeser M, Schutze G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC-MS/MS method. J Pharm Biomed Anal. 2018;152:102–10.  https://doi.org/10.1016/j.jpba.2018.01.031.CrossRefGoogle Scholar
  34. 34.
    Zander J, Maier B, Suhr A, Zoller M, Frey L, Teupser D, et al. Quantification of piperacillin, tazobactam, cefepime, meropenem, ciprofloxacin and linezolid in serum using an isotope dilution UHPLC-MS/MS method with semi-automated sample preparation. Clin Chem Lab Med. 2015;53(5):781–91.  https://doi.org/10.1515/cclm-2014-0746.CrossRefGoogle Scholar
  35. 35.
    la Marca G, Villanelli F, Malvagia S, Ombrone D, Funghini S, De Gaudio M, et al. Rapid and sensitive LC-MS/MS method for the analysis of antibiotic linezolid on dried blood spot. J Pharm Biomed Anal. 2012;67-68:86–91.  https://doi.org/10.1016/j.jpba.2012.04.007.CrossRefGoogle Scholar
  36. 36.
    Wang CY, Zhu HB, Cai ZW, Song FR, Liu ZQ, Liu SY. Newborn screening of phenylketonuria using direct analysis in real time (DART) mass spectrometry. Anal Bioanal Chem. 2013;405(10):3159–64.  https://doi.org/10.1007/s00216-013-6713-8.CrossRefGoogle Scholar
  37. 37.
    Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.  https://doi.org/10.1021/ac050162j.CrossRefGoogle Scholar
  38. 38.
    Newsome GA, Kayama I, Brogdon-Grantham SA. Direct analysis in real time mass spectrometry (DART-MS) of discrete sample areas without heat damage. Anal Methods-Uk. 2018;10(9):1038–45.  https://doi.org/10.1039/c7ay02987j.CrossRefGoogle Scholar
  39. 39.
    Williamson R, Raeva A, Almirall JR. Characterization of printing inks using DART-Q-TOF-MS and attenuated total reflectance (ATR) FTIR. J Forensic Sci. 2016;61(3):706–14.  https://doi.org/10.1111/1556-4029.13107.CrossRefGoogle Scholar
  40. 40.
    Rajchl A, Cusimamani EF, Prchaloya J, Sevcik R, Cizkova H, Ziarovska J, et al. Characterisation of yacon tuberous roots and leaves by DART-TOF/MS. Int J Mass Spectrom. 2018;424:27–34.  https://doi.org/10.1016/j.ijms.2017.11.005.CrossRefGoogle Scholar
  41. 41.
    Busman M. Quantitation of mycotoxins using direct analysis in real time mass spectrometry (DART-MS). J AOAC Int. 2018;101(3):643–6.  https://doi.org/10.5740/jaoacint.17-0338.CrossRefGoogle Scholar
  42. 42.
    Sekimoto K, Sakakura M, Kawamukai T, Hike H, Shiota T, Usui F, et al. Improvement in ionization efficiency of direct analysis in real time-mass spectrometry (DART-MS) by corona discharge. Analyst. 2016;141(16):4879–92.  https://doi.org/10.1039/c6an00779a.CrossRefGoogle Scholar
  43. 43.
    dos Santos MK, Gleco E, Davidson JT, Jackson GP, Limberger RP, Arroyo LE. DART-MS/MS screening for the determination of 1,3-dimethylamylamine and undeclared stimulants in seized dietary supplements from Brazil. Forensic Chem. 2018;8:134–45.  https://doi.org/10.1016/j.forc.2018.03.005.CrossRefGoogle Scholar
  44. 44.
    Drury N, Ramotowski R, Moini M. A comparison between DART-MS and DSA-MS in the forensic analysis of writing inks. Forensic Sci Int. 2018;289:27–32.  https://doi.org/10.1016/j.forsciint.2018.05.009.CrossRefGoogle Scholar
  45. 45.
    Lennert E, Bridge C. Analysis and classification of smokeless powders by GC-MS and DART-TOFMS. Forensic Sci Int. 2018;292:11–22.  https://doi.org/10.1016/j.forsciint.2018.09.003.CrossRefGoogle Scholar
  46. 46.
    Li C, Li EX, Wu YQ, You JH, Liu W, Cui ZW, et al. Simultaneous ultrafast determination of six alkaloids in mainstream cigarette smoke by DART-MS/MS. Anal Methods-Uk. 2018;10(39):4793–800.  https://doi.org/10.1039/c8ay01416g.CrossRefGoogle Scholar
  47. 47.
    Guo TY, Yong W, Jin Y, Zhang LY, Liu JH, Wang S, et al. Applications of DART-MS for food quality and safety assurance in food supply chain. Mass Spectrom Rev. 2017;36(2):161–87.  https://doi.org/10.1002/mas.21466.CrossRefGoogle Scholar
  48. 48.
    Kuki A, Nagy L, Nagy T, Zsuga M, Keki S. Screening of additives and other chemicals in polyurethanes by direct analysis in real time mass spectrometry (DART-MS). Anal Bioanal Chem. 2017;409(26):6149–62.  https://doi.org/10.1007/s00216-017-0553-x.CrossRefGoogle Scholar
  49. 49.
    Antal B, Kuki A, Nagy L, Nagy T, Zsuga M, Keki S. Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS). Anal Bioanal Chem. 2016;408(19):5189–98.  https://doi.org/10.1007/s00216-016-9603-z.CrossRefGoogle Scholar
  50. 50.
    Maric M, Marano J, Cody RB, Bridge C. DART-MS: a new analytical technique for forensic paint analysis. Anal Chem. 2018;90(11):6877–84.  https://doi.org/10.1021/acs.analchem.8601067.CrossRefGoogle Scholar
  51. 51.
    Prchalova J, Kovarik F, Rajchl A. Evaluation of the quality of herbal teas by DART/TOF-MS. J Mass Spectrom. 2017;52(2):116–26.  https://doi.org/10.1002/jms.3905.CrossRefGoogle Scholar
  52. 52.
    Zhao Y, Fairhurst MC, Wingen LM, Perraud V, Ezell MJ, Finlayson-Pitts BJ. New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). Atmos Meas Tech. 2017;10(4):1373–86.  https://doi.org/10.5194/amt-10-1373-2017.CrossRefGoogle Scholar
  53. 53.
    Hsieh HY, Li LH, Hsu RY, Kao WF, Huang YC, Hsu CC. Quantification of endogenous cholesterol in human serum on paper using direct analysis in real time mass spectrometry. Anal Chem. 2017;89(11):6147–53.  https://doi.org/10.1021/acs.analchem.7b00943.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lei Yin
    • 1
    • 2
    • 3
  • Yixuan Feng
    • 2
  • Jin Tong
    • 2
  • Zhiqiong Guo
    • 2
  • Yuyao Zhang
    • 2
  • Qi Zhang
    • 2
  • Yantong Sun
    • 4
  • J. Paul Fawcett
    • 5
  • Jingkai Gu
    • 1
    • 2
    • 6
    Email author
  1. 1.Research Institute of Translational MedicineThe First Hospital of Jilin University, Jilin UniversityChangchunChina
  2. 2.Research Center for Drug Metabolism, School of Life ScienceJilin UniversityChangchunChina
  3. 3.College of PharmacyUniversity of ArizonaTucsonUSA
  4. 4.School of Pharmaceutical SciencesJilin UniversityChangchunChina
  5. 5.School of PharmacyUniversity of OtagoDunedinNew Zealand
  6. 6.Beijing Institute of Modern Drug MetabolismBeijingChina

Personalised recommendations