Skip to main content

High-resolution laser ablation inductively coupled plasma mass spectrometry used to study transport of metallic nanoparticles through collagen-rich microstructures in fibroblast multicellular spheroids

Abstract

We have efficiently produced collagen-rich microstructures in fibroblast multicellular spheroids (MCSs) as a three-dimensional in vitro tissue analog to investigate silver (Ag) nanoparticle (NP) penetration. The MCS production was examined by changing the seeding cell number (500 to 40,000 cells) and the growth period (1 to 10 days). MCSs were incubated with Ag NP suspensions with a concentration of 5 μg mL−1 for 24 h. For this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to visualize Ag NP localization quantitatively. Thin sections of MCSs were analyzed by LA-ICP-MS with a laser spot size of 8 μm to image distributions of 109Ag, 31P, 63Cu, 66Zn, and 79Br. A calibration using a NP suspension was applied to convert the measured Ag intensity into the number of NPs present. The determined numbers of NPs ranged from 30 to 7200 particles in an outer rim of MCS. The particle distribution was clearly correlated with the presence of 31P and 66Zn and was localized in the outer rim of proliferating cells with a width that was equal to about twice the diameter of single cells. Moreover, abundant collagens were found in the outer rim of MCSs. For only the highest seeding cell number, NPs were completely captured at the outer rim, in a natural barrier reducing particle transport, whereas Eosin (79Br) used as a probe of small molecules penetrated into the core of MCSs already after 1 min of exposure.

Fibroblast MCS could build up the barrier only for nanoparticles

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kessler R. Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect. 2011;119(3):A120–A5.

    Article  Google Scholar 

  2. Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, OU-Yang Y-S, Chen Y-B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–22.

    Article  CAS  Google Scholar 

  3. Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics - from genomics to proteomics. J Proteome. 2012;75(10):2811–23.

    Article  CAS  Google Scholar 

  4. Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20(11):543–9.

    Article  CAS  Google Scholar 

  5. Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295.

    Article  CAS  Google Scholar 

  6. Aaron J, Travis K, Harrison N, Sokolov K. Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. Nano Lett. 2009;9(10):3612–8.

    Article  CAS  Google Scholar 

  7. Ando J, Fujita K, Smith NI, Kawata S. Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett. 2011;11(12):5344–8.

    Article  CAS  Google Scholar 

  8. Drescher D, Kneipp J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev. 2012;41(17):5780–99.

    Article  CAS  Google Scholar 

  9. Kneipp J, Kneipp H, Rice WL, Kneipp K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem. 2005;77(8):2381–5.

    Article  CAS  Google Scholar 

  10. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2007;23(3):217.

    Article  Google Scholar 

  11. Nam J, Won N, Jin H, Chung H, Kim S. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc. 2009;131(38):13639–45.

    Article  CAS  Google Scholar 

  12. Schneider G, Guttmann P, Heim S, Rehbein S, Mueller F, Nagashima K, et al. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods. 2010;7:985.

    Article  CAS  Google Scholar 

  13. Guehrs E, Schneider M, Günther CM, Hessing P, Heitz K, Wittke D, et al. Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view. J Nanobiotechnol. 2017;15(1):21.

    Article  Google Scholar 

  14. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12(7):2313–33.

    Article  CAS  Google Scholar 

  15. Krystek P, Ulrich A, Garcia CC, Manohar S, Ritsema R. Application of plasma spectrometry for the analysis of engineered nanoparticles in suspensions and products. J Anal At Spectrom. 2011;26(9):1701–21.

    Article  CAS  Google Scholar 

  16. Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, et al. Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol. 2018;92(1):121–41.

    Article  CAS  Google Scholar 

  17. Sabine Becker J, Matusch A, Palm C, Salber D, Morton KA, Susanne Becker J. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics. 2010;2(2):104–11.

    Article  Google Scholar 

  18. Van Acker T, Van Malderen SJM, Van Heerden M, McDuffie JE, Cuyckens F, Vanhaecke F. High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects. Anal Chim Acta. 2016;945:23–30.

    Article  Google Scholar 

  19. Giesen C, Waentig L, Mairinger T, Drescher D, Kneipp J, Roos PH, et al. Iodine as an elemental marker for imaging of single cells and tissue sections by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011;26(11):2160–5.

    Article  CAS  Google Scholar 

  20. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem. 2012;84(22):9684–8.

    Article  CAS  Google Scholar 

  21. Scharlach C, Müller L, Wagner S, Kobayashi Y, Kratz H, Ebert M, et al. LA-ICP-MS allows quantitative microscopy of europium-doped iron oxide nanoparticles and is a possible alternative to ambiguous Prussian blue iron staining. J Biomed Nanotechnol. 2016;12(5):1001–10.

    Article  CAS  Google Scholar 

  22. Büchner T, Drescher D, Traub H, Schrade P, Bachmann S, Jakubowski N, et al. Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping. Anal Bioanal Chem. 2014;406(27):7003–14.

    Article  Google Scholar 

  23. Drescher D, Zeise I, Traub H, Guttmann P, Seifert S, Büchner T, et al. In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica. Adv Funct Mater. 2014;24(24):3765–75.

    Article  CAS  Google Scholar 

  24. Theiner S, Schreiber-Brynzak E, Jakupec MA, Galanski M, Koellensperger G, Keppler BK. LA-ICP-MS imaging in multicellular tumor spheroids - a novel tool in the preclinical development of metal-based anticancer drugs. Metallomics. 2016;8(4):398–402.

    Article  CAS  Google Scholar 

  25. Theiner S, Van Malderen SJM, Van Acker T, Legin A, Keppler BK, Vanhaecke F, et al. Fast high-resolution laser ablation-inductively coupled plasma mass spectrometry imaging of the distribution of platinum-based anticancer compounds in multicellular tumor spheroids. Anal Chem. 2017;89(23):12641–5.

    Article  CAS  Google Scholar 

  26. Furukawa KS, Ushida T, Sakai Y, Kunii K, Suzuki M, Tanaka J, et al. Tissue-engineered skin using aggregates of normal human skin fibroblasts and biodegradable material. J Artif Organs. 2001;4(4):353–6.

    Article  Google Scholar 

  27. Priwitaningrum DL, Blondé J-BG, Sridhar A, van Baarlen J, Hennink WE, Storm G, et al. Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration. J Control Release. 2016;244:257–68.

    Article  CAS  Google Scholar 

  28. Jorgenson AJ, Choi KM, Sicard D, Smith KMJ, Hiemer SE, Varelas X, et al. TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am J Phys Cell Phys. 2017;312(3):C277–C85.

    Article  Google Scholar 

  29. Sapudom J, Pompe T. Biomimetic tumor microenvironments based on collagen matrices. Biomater Sci. 2018;6(8):2009–24.

    Article  CAS  Google Scholar 

  30. Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of tumor microenvironment and cancer metastasis - a mini review. Comput Struct Biotechnol J. 2018;16:279–87.

    Article  CAS  Google Scholar 

  31. Suzuki T, Sakata S, Makino Y, Obayashi H, Ohara S, Hattori K, et al. iQuant2: software for rapid and quantitative imaging using laser ablation-ICP mass spectrometry. Mass Spectrom. 2018;7(1):A0065-A.

    Article  Google Scholar 

  32. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671.

    Article  CAS  Google Scholar 

  33. Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A. Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials. 2007;28(36):5487–97.

    Article  CAS  Google Scholar 

  34. Drescher D. Spektro-Mikroskopische Charakterisierung von Nano-Bio-Wechselwirkungen in Zellen. PhD thesis. Humboldt University Berlin; 2016.

  35. Drescher D, Guttmann P, Buchner T, Werner S, Laube G, Hornemann A, et al. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells. Nanoscale. 2013;5(19):9193–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Konrad Löhr (Bundesanstalt für Materialforschung und -prüfung) for the support and training for the non-contact piezo-driven array spotter and Akvile Häckel (Charité Universitätsmedizin Berlin) for providing access to and support with using the cryomicrotome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Arakawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1191 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arakawa, A., Jakubowski, N., Flemig, S. et al. High-resolution laser ablation inductively coupled plasma mass spectrometry used to study transport of metallic nanoparticles through collagen-rich microstructures in fibroblast multicellular spheroids. Anal Bioanal Chem 411, 3497–3506 (2019). https://doi.org/10.1007/s00216-019-01827-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01827-w

Keywords

  • Laser ablation inductively coupled plasma mass spectrometry
  • Silver nanoparticles
  • Fibroblast cells
  • Multicellular spheroids