Speciation of structural fragments in crude oil by means of isotope exchange in near-critical water and Fourier transform mass spectrometry

Abstract

The structures of individual molecules in crude oil remain largely unknown despite the considerable amount of research dedicated to this topic. The extreme complexity of crude oil (recently Marshall reported the observation of more than 400,000 unique compounds in one sample) makes it impossible to separate crude oil into individual compounds and determine their structure by NMR or X-ray spectroscopy. Recently, isotope exchange, performed both in solution and in the gas phase, combined with high-resolution mass spectrometry was used for speciation of certain structural fragments of individual molecules in crude oil and humic substances. 16O/18O exchange allows enumeration of =O groups and speciation of furans, whereas H/D exchange allows enumeration of –OH groups, –NH groups, aromatic hydrogens, alpha hydrogens, etc. Unfortunately, crude oil is insoluble in water (the most available and cleanest source of isotopes), so performance of the exchange in solution requires harsh conditions, such as concentrated acids or bases, which could considerably modify the sample. Here we describe the use of a cheap and simple analytical approach for performing both H/D and 16O/18O exchange in crude oil using only water as the source of the isotopes. Crude oil was incubated in near-critical water and the reaction was monitored by high-resolution Fourier transform mass spectrometry. Although isotope exchange results in complication of the spectrum, the resolving power of modern mass spectrometers is sufficient to determine the number of exchanges for each molecule simultaneously. We determined the number of 16O/18O exchanges in 276 species and the number of H/D exchanges in 150 species. Our results allow deeper investigation of crude oil and other nonpolar samples on the molecular level.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Meyers RA, Meyers RA. Handbook of petroleum refining processes. New York: McGraw-Hill; 2004.

    Google Scholar 

  2. 2.

    Kok MV. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Process Technol. 2011;92(5):1026–31.

    CAS  Article  Google Scholar 

  3. 3.

    Mothé MG, Carvalho CH, Sérvulo EF, Mothé CG. Kinetic study of heavy crude oils by thermal analysis. J Therm Anal Calorim. 2013;111(1):663–8.

    Article  CAS  Google Scholar 

  4. 4.

    Zhang Y, Zhang J, Sheng C, Chen J, Liu Y, Zhao L, et al. X-ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres. Energy Fuel. 2010;25(1):240–5.

    Article  CAS  Google Scholar 

  5. 5.

    Gillet S, Rubini P, Delpuech J-J, Escalier J-C, Valentin P. Quantitative carbon-13 and proton nuclear magnetic resonance spectroscopy of crude oil and petroleum products. I. Some rules for obtaining a set of reliable structural parameters. Fuel. 1981;60(3):221–5.

    CAS  Article  Google Scholar 

  6. 6.

    Dong X-G, Lei Q-F, Fang W-J, Yu Q-S. Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy. Thermochim Acta. 2005;427(1–2):149–53.

    CAS  Article  Google Scholar 

  7. 7.

    Marshall AG, Rodgers RP. Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res. 2004;37(1):53–9.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Marshall AG, Rodgers RP. Petroleomics: chemistry of the underworld. Proc Natl Acad Sci U S A. 2008;105(47):18090–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Smith DF, Podgorski DC, Rodgers RP, Blakney GT, Hendrickson CL. 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Anal Chem. 2018;90(3):2041–7.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Krajewski LC, Rodgers RP, Marshall AG. 126 264 assigned chemical formulas from an atmospheric pressure photoionization 9.4 T Fourier transform positive ion cyclotron resonance mass spectrum. Anal Chem. 2017;89(21):11318–24.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Marshall A. Petroleomics: speciation and chemical composition of petroleum crude oil by Fourier transform ion cyclotron resonance mass spectrometry. In: Proceedings of 13th EFTMS Workshop. Germany: Freising. p. 2018.

  12. 12.

    Nikolaev EN, Kostyukevich YI, Vladimirov GN. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: theory and simulations. Mass Spectrom Rev. 2014;35(2):219–58.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Boduszynski MM. Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree.C). EnergyFuels. 1987;1(1):2–11.

    CAS  Google Scholar 

  14. 14.

    Boduszynski MM. Composition of heavy petroleums. 2. Molecular characterization. Energy Fuel. 1988;2(5):597–613.

    CAS  Article  Google Scholar 

  15. 15.

    McKenna AM, Blakney GT, Xian F, Glaser PB, Rodgers RP, Marshall AG. Heavy petroleum composition. 2. Progression of the Boduszynski model to the limit of distillation by ultrahigh-resolution FT-ICR mass spectrometry. Energy Fuel. 2010;24(5):2939246.

    Google Scholar 

  16. 16.

    Snyder LR. Nitrogen and oxygen compound types in petroleum. Total analysis of a 400-700.deg. distillate from a California crude oil. Anal Chem. 1969;41(2):314–23.

    CAS  Article  Google Scholar 

  17. 17.

    Panda SK, Schrader W, al-Hajji A, Andersson JT. Distribution of polycyclic aromatic sulfur heterocycles in three Saudi Arabian crude oils as determined by Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 2007;21(2):1071–7.

    CAS  Article  Google Scholar 

  18. 18.

    Liu P, Shi Q, Chung KH, Zhang Y, Pan N, Zhao S, et al. Molecular characterization of sulfur compounds in Venezuela crude oil and its SARA fractions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 2010;24(9):5089–96.

    CAS  Article  Google Scholar 

  19. 19.

    Dijkmans T, Djokic MR, Van Geem KM, Marin GB. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC×GC–FID/SCD/NCD/TOF-MS. Fuel. 2015;140:398–406.

    CAS  Article  Google Scholar 

  20. 20.

    Headley JV, Peru KM, Barrow MP. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectrom Rev. 2016;35(2):311–28.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Nyadong L, Lai J, Thompsen C, LaFrancois CJ, Cai X, Song C, et al. High-field Orbitrap mass spectrometry and tandem mass spectrometry for molecular characterization of asphaltenes. Energy Fuel. 2018;32(1):294–305.

    CAS  Article  Google Scholar 

  22. 22.

    Petersen JC, Plancher H. Quantitative-determination of carboxylic-acids and their salts and anhydrides in asphalts by selective chemical-reactions and differential infrared spectrometry. Anal Chem. 1981;53(6):786–9.

    CAS  Article  Google Scholar 

  23. 23.

    Acter T, Cho Y, Kim S, Ahmed A, Kim B, Kim S. Optimization and application of APCI hydrogen–deuterium exchange mass spectrometry (HDX MS) for the speciation of nitrogen compounds. J Am Soc Mass Spectrom. 2015;26(9):1522–31.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Ahmed A, Kim S. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry—a method to differentiate isomers by mass spectrometry. J Am Soc Mass Spectrom. 2013;24(12):1900–5.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zherebker A, Kostyukevich Y, Kononikhin A, Roznyatovsky VA, Popov I, Grishin YK, et al. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids. Analyst. 2016;141(8):2426–34.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Kostyukevich Y, Kononikhin A, Zherebker A, Popov I, Perminova I, Nikolaev E. Enumeration of non-labile oxygen atoms in dissolved organic matter by use of 16O/18O exchange and Fourier transform ion-cyclotron resonance mass spectrometry. Anal Bioanal Chem. 2014;406(26):6655–64.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Kostyukevich Y, Kononikhin A, Popov I, Kharybin O, Perminova I, Konstantinov A, et al. Enumeration of labile hydrogens in natural organic matter by use of hydrogen/deuterium exchange Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2013;85(22):11007–13.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Simple atmospheric hydrogen/deuterium exchange method for enumeration of labile hydrogens by electrospray ionization mass spectrometry. Anal Chem. 2013;85(11):5330–4.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Kostyukevich Y, Kononikhina A, Popov I, Starodubtzeva N, Kukaev E, Nikolaev E. Separation of tautomeric forms of [2-nitrophloroglucinol-H]–by an in-electrospray ionization source hydrogen/deuterium exchange approach. Eur J Mass Spectrom. 2014;20(4):345–9.

    CAS  Article  Google Scholar 

  30. 30.

    Kostyukevich Y, Zherebker A, Kononikhin A, Popov I, Perminova I, Nikolaev E. The investigation of the birch tar using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry and hydrogen/deuterium exchange approach. Int J Mass Spectrom. 2016;404:29–34.

    CAS  Article  Google Scholar 

  31. 31.

    Kostyukevich Y, Solovyov S, Kononikhin A, Popov I, Nikolaev E. The investigation of the bitumen from ancient Greek amphora using FT ICR MS, H/D exchange and novel spectrum reduction approach. J Mass Spectrom. 2016;51(6):430–6.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Jeong ES, Cha E, Cha S, Kim S, Oh HB, Kwon OS, et al. Online simultaneous hydrogen/deuterium exchange of multitarget gas-phase molecules by electrospray ionization mass spectrometry coupled with gas chromatography. Anal Chem. 2017;89(22):12284–92.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Ingold CK, Raisin CG, Wilson CL. 362. Direct introduction of deuterium into the aromatic nucleus. Part I. Qualitative comparison of the efficiencies of some acidic deuterating agents and of the influence of some aromatic substituents. J Chem Soc. 1936:1637–43.

  34. 34.

    Acter T, Kim D, Ahmed A, Ha J-H, Kim S. Application of atmospheric pressure photoionization H/D-exchange mass spectrometry for speciation of sulfur-containing compounds. J Am Soc Mass Spectrom. 2017;28(8):1687–95.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Kostyukevich Y, Acter T, Zherebker A, Ahmed A, Kim S, Nikolaev E. Hydrogen/deuterium exchange in mass spectrometry. Mass Spectrom Rev. 2018;37(6):811–53.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Cho Y, Ahmed A, Kim S. Application of atmospheric pressure photo ionization hydrogen/deuterium exchange high-resolution mass spectrometry for the molecular level speciation of nitrogen compounds in heavy crude oils. Anal Chem. 2013;85(20):9758–63.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Wang XX, Schrader W. Selective analysis of sulfur-containing species in a heavy crude oil by deuterium labeling reactions and ultrahigh resolution mass spectrometry. Int J Mol Sci. 2015;16(12):30133–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Atzrodt J, Derdau V, Fey T, Zimmermann J. The renaissance of H/D exchange. Angew Chem Int Ed. 2007;46(41):7744–65.

    CAS  Article  Google Scholar 

  39. 39.

    Brodsky A. Isotope chemistry. Moscow: Academy of Sciences USSR Press; 1957.

    Google Scholar 

  40. 40.

    Smith RM. Superheated water: the ultimate green solvent for separation science. Anal Bioanal Chem. 2006;385(3):419–21.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Junk T, Catallo WJ. Hydrogen isotope exchange reactions involving C-H (D,T) bonds. Chem Soc Rev. 1997;26(5):401–6.

    CAS  Article  Google Scholar 

  42. 42.

    Junk T, Catallo WJ. Preparative supercritical deuterium exchange in arenes and heteroarenes. Tetrahedron Lett. 1996;37(20):3445–8.

    CAS  Article  Google Scholar 

  43. 43.

    Yang Y, Evilia RF. Deuteration of hexane by 2HCl in supercritical deuterium oxide. J Supercrit Fluids. 1999;15(2):165–72.

    CAS  Article  Google Scholar 

  44. 44.

    Kostyukeyich Y, Zherebker A, Vlaskin MS, Borisova L, Nikolaev E. Microprobe for the thermal analysis of crude oil coupled to photoionization Fourier transform mass spectrometry. Anal Chem. 2018;90(15):8756–63.

    Article  CAS  Google Scholar 

  45. 45.

    Kim S, Kramer RW, Hatcher PG. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem. 2003;75(20):5336–44.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian KN. Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal Chem. 2001;73(19):4676–81.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ha Z, Ring Z, Liu S. Estimation of isomeric distributions in petroleum fractions. Energy Fuel. 2005;19(4):1660272.

    Article  CAS  Google Scholar 

  48. 48.

    Tissot BP, Welte DH. Petroleum formation and occurrence. 2nd ed. Berlin: Springer; 1984.

    Book  Google Scholar 

  49. 49.

    Lalli PM, Corilo YE, Rowland SM, Marshall AG, Rodgers RP. Isomeric separation and structural characterization of acids in petroleum by ion mobility mass spectrometry. Energy Fuel. 2015;29(6):3626–33.

    CAS  Article  Google Scholar 

  50. 50.

    Kuhlmann B, Arnett EM, Siskin M. Classical organic-reactions in pure superheated water. J Org Chem. 1994;59(11):3098–101.

    CAS  Article  Google Scholar 

  51. 51.

    Siskin M, Katritzky AR. Reactivity of organic compounds in superheated water: general background. Chem Rev. 2001;101(4):825–35.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Akerlof GC, Oshry HI. The dielectric constant of water at high temperatures and in equilibrium with its vapor. J Am Chem Soc. 1950;72(7):2844–7.

    CAS  Article  Google Scholar 

  53. 53.

    Weingärtner H, Franck EU. Supercritical water as a solvent. Angew Chem Int Ed. 2005;44(18):2672–92.

    Article  CAS  Google Scholar 

  54. 54.

    Zherebker A, Kostyukevich Y, Kononikhin A, Kharybin O, Konstantinov AI, Zaitsev KV, et al. Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry. Anal Bioanal Chem. 2017;409(9):2477–88.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Analytical description of the H/D exchange kinetic of macromolecule. Anal Chem. 2018;90(8):5116–21.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Letter: observation of the 16O/18O exchange during electrospray ionization. Eur J Mass Spectrom (Chichester). 2015;21(2):109–13.

    CAS  Article  Google Scholar 

  57. 57.

    Snyder LR. Nitrogen and oxygen compound types in petroleum. Total analysis of a 400-700 °F distillate from a California crude oil. Anal Chem. 1969;41(2):31423.

    Article  Google Scholar 

  58. 58.

    Snyder LR. Nitrogen and oxygen compound types in petroleum. Total analysis of an 850-1000 °F distillate from a California crude oil. Anal Chem. 1969;41(8):1084–94.

    CAS  Article  Google Scholar 

  59. 59.

    Snyder LR, Buell BE, Howard HE. Nitrogen and oxygen compound types in petroleum. Total analysis of a 700-850 °F distillate from a California crude oil. Anal Chem 1968;40(8):1303–1317.

    CAS  Article  Google Scholar 

  60. 60.

    Siskin M, Katritzky AR. A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water. J Anal Appl Pyrolysis. 2000;54(1–2):193–214.

    CAS  Article  Google Scholar 

  61. 61.

    Borrego AG, Blanco CG, Prado JG, Diaz C, Guillen MD. 1H NMR and FTIR spectroscopic studies of bitumen and shale oil from selected Spanish oil shales. Energy Fuel. 1996;10(1):77–84.

    CAS  Article  Google Scholar 

  62. 62.

    Yao J, Evilia RF. Deuteration of extremely weak organic-acids by enhanced acid-base reactivity in supercritical deuteroxide solution. J Am Chem Soc. 1994;116(25):11229–33.

    CAS  Article  Google Scholar 

  63. 63.

    Gurgel LVA, Marabezi K, Zanbom MD, Curvelo AAD. Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Ind Eng Chem Res. 2012;51(3):1173–85.

    CAS  Article  Google Scholar 

  64. 64.

    Werstiuk NH, Timmins G. Protium-deuterium exchange of alkylated benzenes in dilute acid at elevated-temperatures. Can J Chem. 1989;67(11):1744–7.

    CAS  Article  Google Scholar 

  65. 65.

    Kostyukevich Y, Nikolaev E. Ion source multiplexing on a single mass spectrometer. Anal Chem. 2018;90(5):3576–83.

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

The investigation of the sample by ultrahigh-resolution mass spectrometry was supported by the Russian Science Foundation (grant no. 18-79-10127). The development of the reactor was supported by the Russian Science Foundation (grant no. 17-19-01617). NMR experiments were supported by Lomonosov Moscow State University “Program of Development”.

Author information

Affiliations

Authors

Contributions

The manuscript was written with contributions from all authors. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Yury Kostyukevich or Eugene Nikolaev.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 11267 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kostyukevich, Y., Zherebker, A., Vlaskin, M.S. et al. Speciation of structural fragments in crude oil by means of isotope exchange in near-critical water and Fourier transform mass spectrometry. Anal Bioanal Chem 411, 3331–3339 (2019). https://doi.org/10.1007/s00216-019-01802-5

Download citation

Keywords

  • Crude oil
  • Isotope exchange
  • Fourier transform ion cyclotron resonance
  • Atmospheric pressure photoionization
  • Orbitrap
  • Ionization