Meyers RA, Meyers RA. Handbook of petroleum refining processes. New York: McGraw-Hill; 2004.
Google Scholar
Kok MV. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Process Technol. 2011;92(5):1026–31.
CAS
Article
Google Scholar
Mothé MG, Carvalho CH, Sérvulo EF, Mothé CG. Kinetic study of heavy crude oils by thermal analysis. J Therm Anal Calorim. 2013;111(1):663–8.
Article
CAS
Google Scholar
Zhang Y, Zhang J, Sheng C, Chen J, Liu Y, Zhao L, et al. X-ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres. Energy Fuel. 2010;25(1):240–5.
Article
CAS
Google Scholar
Gillet S, Rubini P, Delpuech J-J, Escalier J-C, Valentin P. Quantitative carbon-13 and proton nuclear magnetic resonance spectroscopy of crude oil and petroleum products. I. Some rules for obtaining a set of reliable structural parameters. Fuel. 1981;60(3):221–5.
CAS
Article
Google Scholar
Dong X-G, Lei Q-F, Fang W-J, Yu Q-S. Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy. Thermochim Acta. 2005;427(1–2):149–53.
CAS
Article
Google Scholar
Marshall AG, Rodgers RP. Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res. 2004;37(1):53–9.
CAS
PubMed
Article
Google Scholar
Marshall AG, Rodgers RP. Petroleomics: chemistry of the underworld. Proc Natl Acad Sci U S A. 2008;105(47):18090–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith DF, Podgorski DC, Rodgers RP, Blakney GT, Hendrickson CL. 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Anal Chem. 2018;90(3):2041–7.
CAS
PubMed
Article
Google Scholar
Krajewski LC, Rodgers RP, Marshall AG. 126 264 assigned chemical formulas from an atmospheric pressure photoionization 9.4 T Fourier transform positive ion cyclotron resonance mass spectrum. Anal Chem. 2017;89(21):11318–24.
CAS
PubMed
Article
Google Scholar
Marshall A. Petroleomics: speciation and chemical composition of petroleum crude oil by Fourier transform ion cyclotron resonance mass spectrometry. In: Proceedings of 13th EFTMS Workshop. Germany: Freising. p. 2018.
Nikolaev EN, Kostyukevich YI, Vladimirov GN. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: theory and simulations. Mass Spectrom Rev. 2014;35(2):219–58.
PubMed
Article
CAS
Google Scholar
Boduszynski MM. Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree.C). EnergyFuels. 1987;1(1):2–11.
CAS
Google Scholar
Boduszynski MM. Composition of heavy petroleums. 2. Molecular characterization. Energy Fuel. 1988;2(5):597–613.
CAS
Article
Google Scholar
McKenna AM, Blakney GT, Xian F, Glaser PB, Rodgers RP, Marshall AG. Heavy petroleum composition. 2. Progression of the Boduszynski model to the limit of distillation by ultrahigh-resolution FT-ICR mass spectrometry. Energy Fuel. 2010;24(5):2939246.
Google Scholar
Snyder LR. Nitrogen and oxygen compound types in petroleum. Total analysis of a 400-700.deg. distillate from a California crude oil. Anal Chem. 1969;41(2):314–23.
CAS
Article
Google Scholar
Panda SK, Schrader W, al-Hajji A, Andersson JT. Distribution of polycyclic aromatic sulfur heterocycles in three Saudi Arabian crude oils as determined by Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 2007;21(2):1071–7.
CAS
Article
Google Scholar
Liu P, Shi Q, Chung KH, Zhang Y, Pan N, Zhao S, et al. Molecular characterization of sulfur compounds in Venezuela crude oil and its SARA fractions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 2010;24(9):5089–96.
CAS
Article
Google Scholar
Dijkmans T, Djokic MR, Van Geem KM, Marin GB. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC×GC–FID/SCD/NCD/TOF-MS. Fuel. 2015;140:398–406.
CAS
Article
Google Scholar
Headley JV, Peru KM, Barrow MP. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review. Mass Spectrom Rev. 2016;35(2):311–28.
CAS
PubMed
Article
Google Scholar
Nyadong L, Lai J, Thompsen C, LaFrancois CJ, Cai X, Song C, et al. High-field Orbitrap mass spectrometry and tandem mass spectrometry for molecular characterization of asphaltenes. Energy Fuel. 2018;32(1):294–305.
CAS
Article
Google Scholar
Petersen JC, Plancher H. Quantitative-determination of carboxylic-acids and their salts and anhydrides in asphalts by selective chemical-reactions and differential infrared spectrometry. Anal Chem. 1981;53(6):786–9.
CAS
Article
Google Scholar
Acter T, Cho Y, Kim S, Ahmed A, Kim B, Kim S. Optimization and application of APCI hydrogen–deuterium exchange mass spectrometry (HDX MS) for the speciation of nitrogen compounds. J Am Soc Mass Spectrom. 2015;26(9):1522–31.
CAS
PubMed
Article
Google Scholar
Ahmed A, Kim S. Atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry—a method to differentiate isomers by mass spectrometry. J Am Soc Mass Spectrom. 2013;24(12):1900–5.
CAS
PubMed
Article
Google Scholar
Zherebker A, Kostyukevich Y, Kononikhin A, Roznyatovsky VA, Popov I, Grishin YK, et al. High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids. Analyst. 2016;141(8):2426–34.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Kononikhin A, Zherebker A, Popov I, Perminova I, Nikolaev E. Enumeration of non-labile oxygen atoms in dissolved organic matter by use of 16O/18O exchange and Fourier transform ion-cyclotron resonance mass spectrometry. Anal Bioanal Chem. 2014;406(26):6655–64.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Kononikhin A, Popov I, Kharybin O, Perminova I, Konstantinov A, et al. Enumeration of labile hydrogens in natural organic matter by use of hydrogen/deuterium exchange Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2013;85(22):11007–13.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Simple atmospheric hydrogen/deuterium exchange method for enumeration of labile hydrogens by electrospray ionization mass spectrometry. Anal Chem. 2013;85(11):5330–4.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Kononikhina A, Popov I, Starodubtzeva N, Kukaev E, Nikolaev E. Separation of tautomeric forms of [2-nitrophloroglucinol-H]–by an in-electrospray ionization source hydrogen/deuterium exchange approach. Eur J Mass Spectrom. 2014;20(4):345–9.
CAS
Article
Google Scholar
Kostyukevich Y, Zherebker A, Kononikhin A, Popov I, Perminova I, Nikolaev E. The investigation of the birch tar using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry and hydrogen/deuterium exchange approach. Int J Mass Spectrom. 2016;404:29–34.
CAS
Article
Google Scholar
Kostyukevich Y, Solovyov S, Kononikhin A, Popov I, Nikolaev E. The investigation of the bitumen from ancient Greek amphora using FT ICR MS, H/D exchange and novel spectrum reduction approach. J Mass Spectrom. 2016;51(6):430–6.
CAS
PubMed
Article
Google Scholar
Jeong ES, Cha E, Cha S, Kim S, Oh HB, Kwon OS, et al. Online simultaneous hydrogen/deuterium exchange of multitarget gas-phase molecules by electrospray ionization mass spectrometry coupled with gas chromatography. Anal Chem. 2017;89(22):12284–92.
CAS
PubMed
Article
Google Scholar
Ingold CK, Raisin CG, Wilson CL. 362. Direct introduction of deuterium into the aromatic nucleus. Part I. Qualitative comparison of the efficiencies of some acidic deuterating agents and of the influence of some aromatic substituents. J Chem Soc. 1936:1637–43.
Acter T, Kim D, Ahmed A, Ha J-H, Kim S. Application of atmospheric pressure photoionization H/D-exchange mass spectrometry for speciation of sulfur-containing compounds. J Am Soc Mass Spectrom. 2017;28(8):1687–95.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Acter T, Zherebker A, Ahmed A, Kim S, Nikolaev E. Hydrogen/deuterium exchange in mass spectrometry. Mass Spectrom Rev. 2018;37(6):811–53.
CAS
PubMed
Article
Google Scholar
Cho Y, Ahmed A, Kim S. Application of atmospheric pressure photo ionization hydrogen/deuterium exchange high-resolution mass spectrometry for the molecular level speciation of nitrogen compounds in heavy crude oils. Anal Chem. 2013;85(20):9758–63.
CAS
PubMed
Article
Google Scholar
Wang XX, Schrader W. Selective analysis of sulfur-containing species in a heavy crude oil by deuterium labeling reactions and ultrahigh resolution mass spectrometry. Int J Mol Sci. 2015;16(12):30133–43.
CAS
PubMed
PubMed Central
Article
Google Scholar
Atzrodt J, Derdau V, Fey T, Zimmermann J. The renaissance of H/D exchange. Angew Chem Int Ed. 2007;46(41):7744–65.
CAS
Article
Google Scholar
Brodsky A. Isotope chemistry. Moscow: Academy of Sciences USSR Press; 1957.
Google Scholar
Smith RM. Superheated water: the ultimate green solvent for separation science. Anal Bioanal Chem. 2006;385(3):419–21.
CAS
PubMed
Article
Google Scholar
Junk T, Catallo WJ. Hydrogen isotope exchange reactions involving C-H (D,T) bonds. Chem Soc Rev. 1997;26(5):401–6.
CAS
Article
Google Scholar
Junk T, Catallo WJ. Preparative supercritical deuterium exchange in arenes and heteroarenes. Tetrahedron Lett. 1996;37(20):3445–8.
CAS
Article
Google Scholar
Yang Y, Evilia RF. Deuteration of hexane by 2HCl in supercritical deuterium oxide. J Supercrit Fluids. 1999;15(2):165–72.
CAS
Article
Google Scholar
Kostyukeyich Y, Zherebker A, Vlaskin MS, Borisova L, Nikolaev E. Microprobe for the thermal analysis of crude oil coupled to photoionization Fourier transform mass spectrometry. Anal Chem. 2018;90(15):8756–63.
Article
CAS
Google Scholar
Kim S, Kramer RW, Hatcher PG. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem. 2003;75(20):5336–44.
CAS
PubMed
Article
Google Scholar
Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian KN. Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal Chem. 2001;73(19):4676–81.
CAS
PubMed
Article
Google Scholar
Ha Z, Ring Z, Liu S. Estimation of isomeric distributions in petroleum fractions. Energy Fuel. 2005;19(4):1660272.
Article
CAS
Google Scholar
Tissot BP, Welte DH. Petroleum formation and occurrence. 2nd ed. Berlin: Springer; 1984.
Book
Google Scholar
Lalli PM, Corilo YE, Rowland SM, Marshall AG, Rodgers RP. Isomeric separation and structural characterization of acids in petroleum by ion mobility mass spectrometry. Energy Fuel. 2015;29(6):3626–33.
CAS
Article
Google Scholar
Kuhlmann B, Arnett EM, Siskin M. Classical organic-reactions in pure superheated water. J Org Chem. 1994;59(11):3098–101.
CAS
Article
Google Scholar
Siskin M, Katritzky AR. Reactivity of organic compounds in superheated water: general background. Chem Rev. 2001;101(4):825–35.
CAS
PubMed
Article
Google Scholar
Akerlof GC, Oshry HI. The dielectric constant of water at high temperatures and in equilibrium with its vapor. J Am Chem Soc. 1950;72(7):2844–7.
CAS
Article
Google Scholar
Weingärtner H, Franck EU. Supercritical water as a solvent. Angew Chem Int Ed. 2005;44(18):2672–92.
Article
CAS
Google Scholar
Zherebker A, Kostyukevich Y, Kononikhin A, Kharybin O, Konstantinov AI, Zaitsev KV, et al. Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry. Anal Bioanal Chem. 2017;409(9):2477–88.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Analytical description of the H/D exchange kinetic of macromolecule. Anal Chem. 2018;90(8):5116–21.
CAS
PubMed
Article
Google Scholar
Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E. Letter: observation of the 16O/18O exchange during electrospray ionization. Eur J Mass Spectrom (Chichester). 2015;21(2):109–13.
CAS
Article
Google Scholar
Snyder LR. Nitrogen and oxygen compound types in petroleum. Total analysis of a 400-700 °F distillate from a California crude oil. Anal Chem. 1969;41(2):31423.
Article
Google Scholar
Snyder LR. Nitrogen and oxygen compound types in petroleum. Total analysis of an 850-1000 °F distillate from a California crude oil. Anal Chem. 1969;41(8):1084–94.
CAS
Article
Google Scholar
Snyder LR, Buell BE, Howard HE. Nitrogen and oxygen compound types in petroleum. Total analysis of a 700-850 °F distillate from a California crude oil. Anal Chem 1968;40(8):1303–1317.
CAS
Article
Google Scholar
Siskin M, Katritzky AR. A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water. J Anal Appl Pyrolysis. 2000;54(1–2):193–214.
CAS
Article
Google Scholar
Borrego AG, Blanco CG, Prado JG, Diaz C, Guillen MD. 1H NMR and FTIR spectroscopic studies of bitumen and shale oil from selected Spanish oil shales. Energy Fuel. 1996;10(1):77–84.
CAS
Article
Google Scholar
Yao J, Evilia RF. Deuteration of extremely weak organic-acids by enhanced acid-base reactivity in supercritical deuteroxide solution. J Am Chem Soc. 1994;116(25):11229–33.
CAS
Article
Google Scholar
Gurgel LVA, Marabezi K, Zanbom MD, Curvelo AAD. Dilute acid hydrolysis of sugar cane bagasse at high temperatures: a kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Ind Eng Chem Res. 2012;51(3):1173–85.
CAS
Article
Google Scholar
Werstiuk NH, Timmins G. Protium-deuterium exchange of alkylated benzenes in dilute acid at elevated-temperatures. Can J Chem. 1989;67(11):1744–7.
CAS
Article
Google Scholar
Kostyukevich Y, Nikolaev E. Ion source multiplexing on a single mass spectrometer. Anal Chem. 2018;90(5):3576–83.
CAS
PubMed
Article
Google Scholar