Skip to main content
Log in

Comprehensive two-dimensional liquid chromatography for the characterization of acrylate-modified hyaluronic acid

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hyaluronic acid and its acrylate derivatives are important intermediates for various pharmaceutical, biomedical, and cosmetic applications due to their biocompatibility and viscoelasticity properties. However, these polymers are inherently difficult to characterize due to their significant heterogeneity regarding molar mass and chemical composition (degree of substitution, DS). The present study describes the development of a comprehensive online two-dimensional liquid chromatography (2D-LC) approach to characterize hyaluronic acid and its acrylate derivatives (DS ranging from 0.4 to 3.1) in terms of molar mass and degree of substitution. In the first dimension of the 2D-LC method, separation according to chemical composition/DS was achieved by using a stepwise solvent gradient and a reversed phase C8 column. Fractions from the first dimension were automatically transferred to the second dimension comprising size exclusion chromatographic separation of the fractions according to molar mass. It was found that the hyaluronic acid derivatives were broadly distributed with regard to both chemical composition and molar mass. Fractions with different degrees of substitution were identified, and their molar mass distributions were determined. The study proved that comprehensive 2D-LC is a powerful approach to reveal the complex nature of hyaluronic acid and its derivatives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu L, Liu Y, Li J, Du G, Chen J. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Factories. 2011;10:99–108.

    Article  CAS  Google Scholar 

  2. Chong BF, Blank LM, Mclaughlin R, Nielsen LK. Microbial hyaluronic acid production. Appl Microbiol Biotechnol. 2005;66:341–51.

    Article  CAS  PubMed  Google Scholar 

  3. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med (Praha). 2008;53:397–411.

    Article  CAS  Google Scholar 

  4. Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech. 2016;6:1–9.

    Article  Google Scholar 

  5. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:41–56.

    Article  CAS  Google Scholar 

  6. Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85:469–89.

    Article  CAS  Google Scholar 

  7. Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydrates Diet Fibre. 2015;5:31–61.

    Article  CAS  Google Scholar 

  8. Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym. 2012;90:1395–410.

    Article  CAS  PubMed  Google Scholar 

  9. Alkrad JA, Merstani Y, Neubert RHH. New approaches for quantifying hyaluronic acid in pharmaceutical semisolid formulations using HPLC and CZE. J Pharm Biomed Anal. 2002;30:913–9.

    Article  CAS  PubMed  Google Scholar 

  10. Čožíková D, Šílová T, Moravcová V, Šmejkalová D, Pepeliaev S, Velebný V, et al. Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr Polym. 2017;160:134–42.

    Article  CAS  PubMed  Google Scholar 

  11. Oudshoorn MHM, Rissmann R, Bouwstra JA, Hennink WE. Synthesis of methacrylated hyaluronic acid with tailored degree of substitution. Polymer. 2007;48:1915–20.

    Article  CAS  Google Scholar 

  12. Finelli I, Chiessi E, Galesso D, Renier D, Paradossi G. Gel-like structure of a hexadecyl derivative of hyaluronic acid for the treatment of osteoarthritis. Macromol Biosci. 2009;9:646–53.

    Article  CAS  PubMed  Google Scholar 

  13. Buffa R, Šedová P, Basarabová I, Bobula T, Procházková P, Vágnerová H, et al. A new unsaturated derivative of hyaluronic acid—synthesis, analysis and applications. Carbohydr Polym. 2017;163:247–53.

    Article  CAS  PubMed  Google Scholar 

  14. Pravata L, Braud C, Boustta M, El Ghzaoui A, Tømmeraas K, Guillaumie F, et al. New amphiphilic lactic acid oligomer–hyaluronan conjugates: synthesis and physicochemical characterization. Biomacromolecules. 2008;9:340–8.

    Article  CAS  PubMed  Google Scholar 

  15. Šedová P, Buffa R, Kettou S, Huerta-Angeles G, Hermannová M, Leierová V, et al. Preparation of hyaluronan polyaldehyde—a precursor of biopolymer conjugates. Carbohydr Res. 2013;371:8–15.

    Article  CAS  PubMed  Google Scholar 

  16. Palumbo FS, Pitarresi G, Mandracchia D, Tripodo G, Giammona G. New graft copolymers of hyaluronic acid and polylactic acid: synthesis and characterization. Carbohydr Polym. 2006;66:379–85.

    Article  CAS  Google Scholar 

  17. Vasi A-M, Popa MI, Butnaru M, Dodi G, Verestiuc L. Chemical functionalization of hyaluronic acid for drug delivery applications. Mater Sci Eng C. 2014;38:177–85.

    Article  CAS  Google Scholar 

  18. Pouyani T, Prestwich GD. Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials. Bioconjug Chem. 1994;5:339–47.

    Article  CAS  PubMed  Google Scholar 

  19. Eenschooten C, Guillaumie F, Kontogeorgis GM, Stenby EH, Schwach-Abdellaoui K. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride–modified hyaluronic acid derivatives. Carbohydr Polym. 2010;79:597–605.

    Article  CAS  Google Scholar 

  20. Zawko SA, Truong Q, Schmidt CE. Drug-binding hydrogels of hyaluronic acid functionalized with β-cyclodextrin. J Biomed Mater Res Part A. 2008;87A:1044–52.

    Article  CAS  Google Scholar 

  21. Botha C, Viktor Z, Moire C, Farcet C, Brothier F, Pfukwa H, et al. Separation of hydrophobically modified hyaluronic acid according to the degree of substitution by gradient elution high performance liquid chromatography. Anal Bioanal Chem. 2018;410:4259–73.

    Article  CAS  PubMed  Google Scholar 

  22. Botha C, Kuntz J-F, Moire C, Farcet C, Pfukwa H, Pasch H. Molar mass analysis of hydrophobically modified hyaluronic acid by SEC-MALLS: facing the challenges of amphiphilic biomacromolecules. Macromol Chem Phys 2018;https://doi.org/10.1002/macp.201800233.

  23. Pasch H. Hyphenated separation techniques for complex polymers. Polym Chem. 2013;4:2628–50.

    Article  CAS  Google Scholar 

  24. Pasch H, Trathnigg B. HPLC of polymers. Berlin: Springer; 1997. p. 223.

    Google Scholar 

  25. Radke W, Falkenhagen J. Chapter 5. Liquid interaction chromatography of polymers. In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D, editors. Liquid chromatography. Amsterdam: Elsevier; 2013. p. 93–129.

    Chapter  Google Scholar 

  26. Raust J-A, Brüll A, Moire C, Farcet C, Pasch H. Two-dimensional chromatography of complex polymers: 6. Method development for (meth)acrylate-based copolymers. J Chromatogr A. 2008;1203:207–16.

    Article  CAS  PubMed  Google Scholar 

  27. Radke W. Polymer separations by liquid interaction chromatography: principles – prospects – limitations. J Chromatogr A. 2014;1335:62–79.

    Article  CAS  PubMed  Google Scholar 

  28. Maiko K, Hehn M, Hiller W, Pasch H. Comprehensive two-dimensional liquid chromatography of stereoregular poly(methyl methacrylates) for tacticity and molar mass analysis. Anal Chem. 2013;85:9793–8.

    Article  CAS  PubMed  Google Scholar 

  29. Schoenmakers P, Aarnoutse P. Multi-dimensional separations of polymers. Anal Chem. 2014;86:6172–9.

    Article  CAS  PubMed  Google Scholar 

  30. Shakun M, Heinze T, Radke W. Characterization of sodium carboxymethyl cellulose by comprehensive two-dimensional liquid chromatography. Carbohydr Polym. 2015;130:77–86.

    Article  CAS  PubMed  Google Scholar 

  31. Ghareeb HO, Radke W. Characterization of cellulose acetates according to DS and molar mass using two-dimensional chromatography. Carbohydr Polym. 2013;98:1430–7.

    Article  CAS  PubMed  Google Scholar 

  32. Stern R, Kogan G, Jedrzejas MJ, Šoltés L. The many ways to cleave hyaluronan. Biotechnol Adv. 2007;25:537–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The preparation of the HA and HAM samples by L’Oréal Laboratories is acknowledged.

Funding

The authors received financial support from the L’Oréal Research and Innovation (Aulnay-sous-Bois, France). ZV received funding for her MSc project from the NRF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helen Pfukwa or Harald Pasch.

Ethics declarations

There was no research involving human participants and/or animals. The work has been submitted with the consent of all authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viktor, Z., Farcet, C., Moire, C. et al. Comprehensive two-dimensional liquid chromatography for the characterization of acrylate-modified hyaluronic acid. Anal Bioanal Chem 411, 3321–3330 (2019). https://doi.org/10.1007/s00216-019-01799-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01799-x

Keywords

Navigation