Time-integrated thermal desorption for quantitative SIFT-MS analyses of atmospheric monoterpenes

  • Kristýna Sovová
  • Anatolii Spesyvyi
  • Miroslava Bursová
  • Pavel Pásztor
  • Jiří Kubišta
  • Violetta Shestivska
  • Patrik ŠpanělEmail author


A new time-integrated thermal desorption technique has been developed that can be used with selected ion flow tube mass spectrometry, TI-TD/SIFT-MS, for off-line quantitative analyses of VOCs accumulated onto sorbents. Using a slow desorption temperature ramp, the absolute amounts of desorbed compounds can be quantified in real time by SIFT-MS and constitutional isomers can be separated. To facilitate application of this technique to environmental atmospheric monitoring, method parameters were optimised for quantification of the three common atmospheric monoterpenes: β-pinene, R-limonene and 3-carene. Three sorbent types, Tenax TA, Tenax GR and Porapak Q, were tested under 26 different desorption conditions determined by the “design of experiment”, DOE, systematic approach. The optimal combination of type of sorbent, bed length, sampling flow rate, sample volume and the initial desorption temperature was determined from the experimental results by ANOVA. It was found that Porapak Q exhibited better efficiency of sample collection and further extraction for total monoterpene concentration measurements. On the other hand, Tenax GR or TA enabled separation of all three monoterpenes. The results of this laboratory study were tested with the sample accumulated from a branch of a Pinus nigra tree.

Graphical abstract


TI-TD/SIFT-MS Time-integrated thermal desorption BVOCs monitoring β-Pinene R-Limonene and 3-carene 



We would like to thank David Smith for useful discussions and help with this work.

Funding information

This study was financially supported by the Grant Agency of the Czech Republic (project No. 17-13157Y from which the salaries of KS, AS, PP and VS were covered together with all material costs). MB received support from Charles University (project Specific University Research, SVV).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

216_2019_1782_MOESM1_ESM.pdf (285 kb)
ESM 1 (PDF 284 kb)


  1. 1.
    Stuckenholz S, Büchner C, Ronneburg H, Thielsch G, Heyde M, Freund H-J. Apparatus for low temperature thermal desorption spectroscopy of portable samples. Rev Sci Instrum. 2016;87(4):045103.CrossRefGoogle Scholar
  2. 2.
    Zhu X, Shen Y, Carr R. Correlation between thermal desorption spectroscopy and optical second harmonic generation for monitoring surface coverages. Surf Sci. 1985;163(1):114–20.CrossRefGoogle Scholar
  3. 3.
    Wennberg PO, Bates KH, Crounse JD, Dodson LG, McVay RC, Mertens LA, et al. Gas-phase reactions of isoprene and its major oxidation products. Chem Rev. 2018;118(7):3337–90.CrossRefGoogle Scholar
  4. 4.
    Giunta A, Runyon J, Jenkins M, Teich M. Volatile and within-needle terpene changes to Douglas-fir trees associated with Douglas-fir beetle (Coleoptera: Curculionidae) attack. Environ Entomol. 2016;45(4):920–9.CrossRefGoogle Scholar
  5. 5.
    Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem. 1999;33(1):23–88.CrossRefGoogle Scholar
  6. 6.
    Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ. 2003;37:S197–219.CrossRefGoogle Scholar
  7. 7.
    Exton DA, Smith DJ, McGenity TJ, Steinke M, Hills AJ, Suggett DJ. Application of a fast isoprene sensor (FIS) for measuring isoprene production from marine samples. Limnol Oceanogr Methods. 2010;8(5):185–95.CrossRefGoogle Scholar
  8. 8.
    Park J-H, Fares S, Weber R, Goldstein A. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux–gradient similarity methods. Atmos Chem Phys. 2014;14(1):231–44.CrossRefGoogle Scholar
  9. 9.
    Hens K, Novelli A, Martinez M, Auld J, Axinte R, Bohn B, et al. Observation and modelling of HO x radicals in a boreal forest. Atmos Chem Phys. 2014;14(16):8723–47.CrossRefGoogle Scholar
  10. 10.
    Rinne J, Karl T, Guenther A. Simple, stable, and affordable: towards long-term ecosystem scale flux measurements of VOCs. Atmos Environ. 2016;131:225–7.CrossRefGoogle Scholar
  11. 11.
    Pallozzi E, Guidolotti G, Ciccioli P, Brilli F, Feil S, Calfapietra C. Does the novel fast-GC coupled with PTR-TOF-MS allow a significant advancement in detecting VOC emissions from plants? Agric For Meteorol. 2016;216:232–40.CrossRefGoogle Scholar
  12. 12.
    Materić D, Lanza M, Sulzer P, Herbig J, Bruhn D, Turner C, et al. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC. Anal Bioanal Chem. 2015;407(25):7757–63.CrossRefGoogle Scholar
  13. 13.
    Romano A, Doran S, Belluomo I, Hanna GB. High-throughput breath volatile organic compound analysis using thermal desorption proton transfer reaction time-of-flight mass spectrometry. Anal Chem. 2018;90(17):10204–10.CrossRefGoogle Scholar
  14. 14.
    Španěl P, Smith D. Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom Rev. 2011;30(2):236–67.CrossRefGoogle Scholar
  15. 15.
    Vautz W, Sielemann S, Baumbach JI. Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Anal Chim Acta. 2004;513(2):393–9.CrossRefGoogle Scholar
  16. 16.
    Borsdorf H, Stone JA, Eiceman GA. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques. Int J Mass Spectrom. 2005;246(1–3):19–28.CrossRefGoogle Scholar
  17. 17.
    Wang TS, Španěl P, Smith D. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2 + with eleven C10H16 monoterpenes. Int J Mass Spectrom. 2003;228(1):117–26.CrossRefGoogle Scholar
  18. 18.
    Marcillo A, Jakimovska V, Widdig A, Birkemeyer C. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds. J Chromatogr A. 2017;1514:16–28.CrossRefGoogle Scholar
  19. 19.
    Ross BM, Vermeulen N. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air. Rapid Commun Mass Spectrom. 2007;21(22):3608–12.CrossRefGoogle Scholar
  20. 20.
    Hryniuk A, Ross BM. Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. Int J Mass Spectrom. 2009;285(1–2):26–30.CrossRefGoogle Scholar
  21. 21.
    Leardi R. Experimental design in chemistry: a tutorial. Anal Chim Acta. 2009;652(1):161–72.CrossRefGoogle Scholar
  22. 22.
    Fuentes JD, Gu L, Lerdau M, Atkinson R, Baldocchi D, Bottenheim J, et al. Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc. 2000;81(7):1537–75.CrossRefGoogle Scholar
  23. 23.
    Woolfenden E. Monitoring VOCs in air using sorbent tubes followed by thermal desorption capillary GC analysis: summary of data and practical guidelines. J Air Waste Manage Assoc. 1997;47(1):20–36.CrossRefGoogle Scholar
  24. 24.
    Lindquist F, Bakkeren H. Stability of chlorinated hydrocarbons on Tenax. CEC commissioned report from TNO, the Netherlands, Rpt. 1990(R90/268).Google Scholar
  25. 25.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.CrossRefGoogle Scholar
  26. 26.
    Španěl P, Smith D. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(8):563–9.CrossRefGoogle Scholar
  27. 27.
    Španěl P, Dryahina K, Smith D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int J Mass Spectrom. 2006;249:230–9.Google Scholar
  28. 28.
    Schoon N, Amelynck C, Vereecken L, Arijs E. A selected ion flow tube study of the reactions of H3O+, NO+ and O2 + with a series of monoterpenes. Int J Mass Spectrom. 2003;229(3):231–40.CrossRefGoogle Scholar
  29. 29.
    Wondimu T, Wang R, Ross B. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry. J Breath Res. 2014;8(3):8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kristýna Sovová
    • 1
  • Anatolii Spesyvyi
    • 1
  • Miroslava Bursová
    • 2
  • Pavel Pásztor
    • 1
  • Jiří Kubišta
    • 1
  • Violetta Shestivska
    • 1
  • Patrik Španěl
    • 1
    Email author
  1. 1.The Czech Academy of SciencesJ. Heyrovský Institute of Physical ChemistryPrague 8Czech Republic
  2. 2.Institute of Forensic Medicine and Toxicology, First Faculty of MedicineCharles University and General University Hospital in PraguePrague 2Czech Republic

Personalised recommendations