Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer

Abstract

Huanglongbing (HLB) or citrus greening is a devastating disease of citrus trees that is caused by the gram-negative Candidatus Liberibacter spp. bacteria. The bacteria are phloem limited and transmitted by the Asian citrus psyllid, Diaphorina citri, and the African citrus psyllid, Trioza erytreae, which allows for a wider dissemination of HLB. Infected trees exhibit yellowing of leaves, premature leaf and fruit drop, and ultimately the death of the entire plant. Polymerase chain reaction (PCR) and antibody-based assays (ELISA and/or immunoblot) are commonly used methods for HLB diagnostics. However, they are costly, time-consuming, and destructive to the sample and often not sensitive enough to detect the pathogen very early in the infection stage. Raman spectroscopy (RS) is a noninvasive, nondestructive, analytical technique which provides insight into the chemical structures of a specimen. In this study, by using a handheld Raman system in combination with chemometric analyses, we can readily distinguish between healthy and HLB (early and late stage)-infected citrus trees, as well as plants suffering from nutrient deficits. The detection rate of Raman-based diagnostics of healthy vs HLB infected vs nutrient deficit is ~ 98% for grapefruit and ~ 87% for orange trees, whereas the accuracy of early- vs late-stage HLB infected is 100% for grapefruits and ~94% for oranges. This analysis is portable and sample agnostic, suggesting that it could be utilized for other crops and conducted autonomously.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    How to Feed the World 2050. In: Food and Agriculture Organization of the United Nations. 2009. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf. Accessed 11 Feb 2019.

  2. 2.

    Savary S, Ficke A, Aubertot J-N, Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012;4:519–37.

    Article  Google Scholar 

  3. 3.

    McClean APD, Oberholzer PCJ. Citrus psylla, a vector of the greening disease of sweet orange. S Afr J Agric Sci. 1965;8:297–8.

    Google Scholar 

  4. 4.

    Capoor SP, Rao DG, Viswanath SM. Diaphorina citri Kuway., a vector of the greening disease of citrus in India. Ind J Agric Sci. 1967;37:572–6.

    Google Scholar 

  5. 5.

    Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 2006;88:7–37.

    Google Scholar 

  6. 6.

    Tsai JH, Liu YH. Biology of Diaphorina citri (Homoptera:Psyllidae) on four host plants. J Econ Entomol. 2000;93:1721–5.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Morgan JK, Zhou L, Li W, Shatters RG, Keremane M, Duan YP. Improved real-time PCR detection of ‘Candidatus Liberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes. Mol Cell Probes. 2012;26:90–8.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Lee JA, Halbert SE, Dawson WO, Robertson CJ, Keesling JE, Singer BH. Asymptomatic spread of huanglongbing and implications for disease control. Proc Natl Acad Sci U S A. 2015;112:7605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Chitarra LG, Bulk RW. The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria. Eur J Plant Pathol. 2003;109:407–17.

    Article  CAS  Google Scholar 

  10. 10.

    Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14:136–43.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Hocquellet A, Toorawa P, Bove JM, Garnier M. Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the beta operon. Mol Cell Probes. 1999;13:373–9.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kim J, Wang N. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC Res Notes. 2009;2:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schaad NW, Frederick RD. Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol. 2002;24:250–8.

    Article  CAS  Google Scholar 

  14. 14.

    Wang Z, Yin Y, Hu H, Yuan Q, Peng G, Xia Y. Development and application of molecular-based diagnosis for ‘Candidatus Liberibacter asiaticus’, the causal pathogen of citrus Huanglongbing. Plant Pathol. 2006;55:630–8.

    Article  CAS  Google Scholar 

  15. 15.

    Trivedi P, Sagaram US, Brlansky RH, Rogers M, Stelinski LL, Oswalt C, et al. Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA). Eur J Plant Pathol. 2009;124:553–63.

    Article  CAS  Google Scholar 

  16. 16.

    Almeida MR, Alves RS, Nascimbem LB, Stephani R, Poppi RJ, de Oliveira LF. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem. 2010;397:2693–701.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Zeng ZC, Hu S, Huang SC, Zhang YJ, Zhao WX, Li JF, et al. Novel electrochemical Raman spectroscopy enabled by water immersion objective. Anal Chem. 2016;88:9381–5.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Virkler K, Lednev IK. Blood species identification for forensic purposes using Raman spectroscopy combined with advanced analytical statistics. Anal Chem. 2009;81:7773–7.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    López-López M, Delgado JJ, García-Ruiz C. Analysis of macroscopic gunshot residues by Raman spectroscopy to assess the weapon memory effect. Forensic Sci Int. 2013;231:1–5.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Cantarero A. Raman scattering applied to materials science. Procedia Mater Sci. 2015;9:113–22.

    Article  CAS  Google Scholar 

  21. 21.

    Kurouski D, Washington J, Ozbil M, Prabhakar R, Shekhtman A, Lednev IK. Disulfide bridges remain intact while native insulin converts into amyloid fibrils. PLoS One. 2012;7:e36989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bueno J, Lednev IK. Advanced statistical analysis and discrimination of gunshot residue implementing combined Raman and FT-IR data. Anal Methods. 2013;5:6292–6.

    Article  CAS  Google Scholar 

  23. 23.

    Farber C, Kurouski D. Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem. 2018;90:3009–12.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Egging V, Nguyen J, Kurouski D. Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held Raman spectrometer. Anal Chem. 2018;90:8616–21.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Sanchez L, Farber C, Lei J, Zhu-Salzman K, Kurouski D. Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal Chem. 2019;91:1733–7.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Chiong Kelvin T, Mona B Damaj, Carmen S Padilla, Carlos A Avila, Shankar R Pant, Kranthi K Mandadi, Ninfa R Ramos, Denise V Carvalho, and T. Erik Mirkov (2017) Reproducible genomic DNA preparation from diverse crop species for molecular genetic applications. Plant methods, 13 (1), 106.

  27. 27.

    Rezadoost, M H, Kordrostami M, & Kumleh HH (2016). An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. 3 Biotech, 6(1), 61.

  28. 28.

    Mafra V, Kubo K.S, Alves-Ferreira M, Ribeiro-Alves M, Stuart R.M, Boava L.P, Rodrigues CM, and Machado, M.A. (2012). Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. PLoS ONE 7, e31263.

  29. 29.

    Synytsya A, Čopíková J, Matějka P, Machovič V. Fourier transform Raman and infrared spectroscopy of pectins. Carb Polym. 2003;54:97–106.

    Article  CAS  Google Scholar 

  30. 30.

    Edwards HG, Farwell DW, Webster D. FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc. 1997;53A:2383–92.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Tschirner N, Brose K, Schenderlein M, Zouni A, Schlodder E, Mroginski MA, et al. The anomaly of the ν1-resonance Raman band of bβ-carotene in solution and in photosystem I and II. Phys Stat Solid. 2009;246:2790–3.

    Article  CAS  Google Scholar 

  32. 32.

    Kurouski D, Van Duyne RP, Lednev IK. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst. 2015;140:4967–80.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Agarwal UP. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci. 2014;5:1–12.

    Article  Google Scholar 

  34. 34.

    Mary YS, Panicker CY, Varghese HT. Vibrational spectroscopic investigations of 4-nitropyrocatechol. Orient J Chem. 2012;28:937–41.

    Article  CAS  Google Scholar 

  35. 35.

    Yu MM, Schulze HG, Jetter R, Blades MW, Turner RF. Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl Spectrosc. 2007;61:32–7.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Cao Y, Shen D, Lu Y, Huang JA. Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann Bot. 2006;97:1091–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Devitt G, Howard K, Mudher A, Mahajan S. Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS Chem Neurosci. 2018;9:404–20.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Adar F. Carotenoids - their resonance raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy. 2017;32:12–20.

    Google Scholar 

  39. 39.

    Kang L, Wang K, Li X, Zou B. High pressure structural investigation of benzoic acid: Raman spectroscopy and x-ray diffraction. J Phys Chem C. 2016;120:14758–66.

    Article  CAS  Google Scholar 

  40. 40.

    Agarwal UP. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta. 2006;224:1141–53.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Pompeu DR, Larondelle Y, Rogez H, Abbas O, Pierna JAF, Baeten V. Characterization and discrimination of phenolic compounds using Fourier transformation Raman spectroscopy and chemometric tools. Biotechnol Agron Soc Environ. 2017;22:1–16.

    Google Scholar 

  42. 42.

    Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci. 2018;19:335.

    Article  CAS  PubMed Central  Google Scholar 

  43. 43.

    Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Physiol. 1994;127:617–33.

    Article  CAS  Google Scholar 

  44. 44.

    Treutter D. Significance of flavonoids in plant resistance: a review. Environ Chem Lett. 2006;4:147–57.

    Article  CAS  Google Scholar 

  45. 45.

    Skadhauge B, Thomsen KK, Von Wettstein D. The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas. 1997;126:147–60.

    Article  CAS  Google Scholar 

  46. 46.

    Sankaran S, Ehsani R, Etxeberria E. Mid-infrared spectroscopy for detection of Huanglongbing (greening) in citrus leaves. Talanta. 2010;83:574–581.

  47. 47.

    Shashilov VA, Lednev IK. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev. 2010;110:5692–713.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Eriksson L, Byrne T, Johansson E, Trygg J, Vikstrom C. Multi- and megavariate data analysis basic principles and applications, 3rd edn. Umetrics Academy; 2013.

  49. 49.

    Sankaran S, Mishra A, Maja JM, Ehsani R. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Comp Electron Agricult. 2011;77:127–34.

    Article  Google Scholar 

  50. 50.

    Hawkins SA, Park B, Poole GH, Gottwald T, Windham WR, Lawrence KC. Detection of citrus Huanglongbing by Fourier transform infrared-attenuated total reflection spectroscopy. Appl Spectrosc. 2010;64:100–3.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Vallejo-Pérez MR, Mendoza MG, Elias MG, Gonzalez FJ, Contreras HR, Servin CC. Raman spectroscopy an option for the early detection of citrus Huanglongbing. Appl Spectrosc. 2016;70:829–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Texas A&M University-Kingsville, Citrus Center, and Riofarms, TX, for access to the citrus orchards.

Funding

This study was supported by funds from Texas A&M AgriLife Research, Texas A&M University Governor’s University Research Initiative (GURI) grant program (12-2016/M1700437) to DK, and USDA-NIFA-AFRI (2018-70016-28198) to KKM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kurouski.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 789 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanchez, L., Pant, S., Xing, Z. et al. Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem 411, 3125–3133 (2019). https://doi.org/10.1007/s00216-019-01776-4

Download citation

Keywords

  • Raman spectroscopy
  • Plant diseases
  • Huanglongbing
  • Chemometrics
  • Nutrient deficiency