Skip to main content

Detection of protease and engineered phage-infected bacteria using peptide-graphene oxide nanosensors

Abstract

A peptide-graphene oxide nanosensor has been developed to detect tobacco etch virus (TEV) protease and bacteria infected with an engineered bacteriophage. In the detection strategy, a peptide (sequence: RKRFRENLYFQSCP) is tagged with fluorophores and graphene oxide (GO) is used to adsorb the peptides while quenching their fluorescence. In the presence of TEV protease, fluoropeptides are cleaved between glutamine (Q) and serine (S), resulting in the recovery of fluorescence signal. Based on the fluorescent intensity, the detection limit of TEV protease is 51 ng/μL. Additionally, we have utilized the sensing system to detect bacteria cells. Bacteriophages, which were engineered to carry TEV protease genes, were used to infect target bacteria (Escherichia coli) resulting in the translation and release of the protease. This allowed the estimation of bacteria at the concentration of 104 CFU/mL. This strategy has the potential to be developed as a multiplex detection platform of multiple bacterial species.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. López-Otín C, Bond JS. Proteases: multifunctional enzymes in life and disease. J Biol Chem. 2008;283(45):30433–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Concha N, Abdel-Meguid S. Controlling apoptosis by inhibition of caspases. Curr Med Chem. 2002;9(6):713–26.

    Article  CAS  PubMed  Google Scholar 

  3. Puente XS, Sánchez LM, Overall CM, López-Otín C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet. 2003;4(7):544–58.

    Article  CAS  PubMed  Google Scholar 

  4. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, et al. Sensing caspase 3 activity with quantum dot− fluorescent protein assemblies. J Am Chem Soc. 2009;131(11):3828–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morales-Narvaez E, Merkoci A. Graphene oxide as an optical biosensing platform. Adv Mater. 2012;24(25):3298–308. https://doi.org/10.1002/adma.201200373.

    Article  CAS  PubMed  Google Scholar 

  6. Kim J, Cote LJ, Huang J. Two dimensional soft material: new faces of graphene oxide. Acc Chem Res. 2012;45(8):1356–64.

    Article  CAS  PubMed  Google Scholar 

  7. Du D, Wang L, Shao Y, Wang J, Engelhard MH, Lin Y. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem. 2011;83(3):746–52. https://doi.org/10.1021/ac101715s.

    Article  CAS  PubMed  Google Scholar 

  8. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41(2):666–86.

    Article  CAS  PubMed  Google Scholar 

  9. He Q, Wu S, Yin Z, Zhang H. Graphene-based electronic sensors. Chem Sci. 2012;3(6):1764–72.

    Article  CAS  Google Scholar 

  10. Jang H, Lee J, Min D-H. Graphene oxide for fluorescence-mediated enzymatic activity assays. J Mater Chem B. 2014;2(17):2452–60. https://doi.org/10.1039/c4tb00199k.

    Article  CAS  Google Scholar 

  11. Li F, Chao J, Li Z, Xing S, Su S, Li X, et al. Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. Anal Chem. 2015;87(7):3877–83.

    Article  CAS  PubMed  Google Scholar 

  12. Gao L, Lian C, Zhou Y, Yan L, Li Q, Zhang C, et al. Graphene oxide–DNA based sensors. Biosens Bioelectron. 2014;60:22–9.

    Article  CAS  PubMed  Google Scholar 

  13. Huang J, Gao X, Jia J, Kim J-K, Li Z. Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal Chem. 2014;86(6):3209–15.

    Article  CAS  PubMed  Google Scholar 

  14. Kwak SY, Yang JK, Jeon SJ, Kim HI, Yim J, Kang H, et al. Luminescent graphene oxide with a peptide-quencher complex for optical detection of cell-secreted proteases by a turn-on response. Adv Funct Mater. 2014;24(32):5119–28.

    Article  CAS  Google Scholar 

  15. Wang H, Zhang Q, Chu X, Chen T, Ge J, Yu R. Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew Chem Int Ed. 2011;50(31):7065–9.

    Article  CAS  Google Scholar 

  16. Chou SS, De M, Luo JY, Rotello VM, Huang JX, Dravid VP. Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing. J Am Chem Soc. 2012;134(40):16725–33. https://doi.org/10.1021/ja306767y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alcaine SD, Tilton L, Serrano MAC, Wang M, Vachet RW, Nugen SR. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens. Appl Microbiol Biotechnol. 2015;99(19):8177–85. https://doi.org/10.1007/s00253-015-6867-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339–9.

  19. Kjeldsen L, Bjerrum OW, Hovgaard D, Johnsen AH, Sehested M, Borregaard N. Human neutrophil gelatinase: a marker for circulating blood neutrophils. Purification and quantitation by enzyme linked immunosorbent assay. Eur J Haematol. 1992;49(4):180–91.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang M, Ye BC. A reversible fluorescent DNA logic gate based on graphene oxide and its application for iodide sensing. Chem Commun. 2012;48(30):3647–9. https://doi.org/10.1039/c2cc17906g.

    Article  CAS  Google Scholar 

  21. Zhang M, Yin BC, Wang XF, Ye BC. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun. 2011;47(8):2399–401. https://doi.org/10.1039/c0cc04887a.

    Article  CAS  Google Scholar 

  22. Gray DC, Mahrus S, Wells JA. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell. 2010;142(4):637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Jackson AA, Rotello VM, Nugen SR. Colorimetric detection of Escherichia coli based on the enzyme-induced metallization of gold nanorods. Small. 2016;12(18):2469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Alcaine SD, Jackson AA, Rotello VM, Nugen SR. Development of engineered bacteriophages for Escherichia coli detection and high-throughput antibiotic resistance determination. ACS Sensors. 2017;2(4):484–9.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Picard RA, Wang D, Nugen SR. Lyophilized engineered phages for detection in food matrices. ACS Sensors. 2017;2(11):1573–1577.

Download references

Acknowledgements

The authors would like to acknowledge the National Science Foundation (1705797). Additionally, this material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch under 1013507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam R. Nugen.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Nugen, S.R. Detection of protease and engineered phage-infected bacteria using peptide-graphene oxide nanosensors. Anal Bioanal Chem 411, 2487–2492 (2019). https://doi.org/10.1007/s00216-019-01766-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01766-6

Keywords

  • TEV protease
  • Engineered phage
  • Bacteria detection
  • Graphene oxide
  • Bacteriophage
  • Biosensor