Skip to main content
Log in

Electrochemiluminescence as emerging microscopy techniques

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of electrochemiluminescence (ECL), i.e., chemiluminescence triggered by electrochemical stimulus, as emitting light source for microscopy is an emerging approach with different applications ranging from the visualization of nanomaterials to cell mapping. In this trend article, we give an overview of the state of the art in this new field with the purpose to illustrate all the possible applications so far explored as well as describing the mechanism underlying this transduction technique. The results discussed here would highlight the great potential of the combination between ECL and microscopy and how this marriage can turn into an innovative approach with specific application in analytical sciences.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bard JA, editor. Electrogenerated chemiluminescence. New York: Marcel Dekker; 2004.

    Google Scholar 

  2. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–36.

    Article  CAS  PubMed  Google Scholar 

  3. Hesari M, Ding Z. Review—electrogenerated chemiluminescence: light years ahead. J Electrochem Soc. 2016;163:H3116–31.

    Article  CAS  Google Scholar 

  4. Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem. 2016;3:1990–7.

    Article  CAS  Google Scholar 

  5. Forster JR, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem. 2009;2:359–85.

    Article  CAS  Google Scholar 

  6. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    Article  CAS  PubMed  Google Scholar 

  7. Gross EM, Durant HE, Hipp KN, Lai RY. Electrochemiluminescence detection in paper-based and other inexpensive microfluidic devices. ChemElectroChem. 2017;4:1594–603.

    Article  CAS  Google Scholar 

  8. Li L, Chen Y, Zhu J-J. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89:358–71.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42.

    Article  CAS  PubMed  Google Scholar 

  10. Bertoncello P, Ugo P. Recent advances in electrochemiluminescence with quantum dots and arrays of nanoelectrodes. ChemElectroChem. 2017;4:1663–76.

    Article  CAS  Google Scholar 

  11. Gross EM, Maddipati SS, Snyder SM. A review of electrogenerated chemiluminescent biosensors for assays in biological matrices. Bioanal. 2016;8:2071–89.

    Article  CAS  Google Scholar 

  12. Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY. Strategic applications of nanomaterials as sensing platforms and signal amplification markers at electrochemical immunosensors. Electroanal. 2016;28:1730–49.

    Article  CAS  Google Scholar 

  13. Rusling JF. Low-cost microfluidic arrays for protein-based cancer diagnostics using ECL detection. Interface Mag. 2016;25:47–51.

    Article  CAS  Google Scholar 

  14. Juzgado A, Soldà A, Ostric A, Criado A, Valenti G, Rapino S, et al. Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. J Mater Chem B. 2017;5:6681–7.

    Article  CAS  Google Scholar 

  15. Stewart AJ, Hendry J, Dennany L. Whole blood electrochemiluminescent detection of dopamine. Anal Chem. 2015;87:11847–53.

    Article  CAS  PubMed  Google Scholar 

  16. Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem Sci. 2014;5:2568–72.

    Article  CAS  Google Scholar 

  17. Roche Diagnostics Corp. 2018. www.roche.com

  18. Meso Scale Discovery. 2018. www.mesoscale.com/en/technical_resources/our_technology/multi-array

  19. Neves MMPS, González-García MB, Hernández-Santos D, Fanjul-Bolado P. A miniaturized flow injection analysis system for electrogenerated chemiluminescence−based assays. ChemElectroChem. 2017;4:1686–9.

    Article  CAS  Google Scholar 

  20. Miao W, Choi JP, Bard AJ. Electrogenerated chemiluminescence 69: the Tris(2,2′-bipyridine) ruthenium (II), (Ru (bpy)32+)/tri-n-propylamine (TPrA) system revisited - a new route involving TPrA+ cation radicals. J Am Chem Soc. 2002;124:14478–85.

    Article  CAS  PubMed  Google Scholar 

  21. Daviddi E, Oleinick A, Svir I, Valenti G, Paolucci F, Amatore C. Theory and simulation for optimising electrogenerated chemiluminescence from Tris(2,2′-bipyridine)-ruthenium (II)-doped silica nanoparticles and tripropylamine. ChemElectroChem. 2017;4:1719–30.

    Article  CAS  Google Scholar 

  22. Amatore C, Pebay C, Servant L, Sojic N, Szunerits S, Thouin L. Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. ChemPhysChem. 2006;7:1322–7.

    Article  CAS  PubMed  Google Scholar 

  23. Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem. 2001;73:2153–6.

    Article  CAS  PubMed  Google Scholar 

  24. Valenti G, Zangheri M, Sansaloni SE, Mirasoli M, Penicaud A, Roda A, et al. Transparent carbon nanotube network for efficient electrochemiluminescence devices. Chem Eur J. 2015;21:12640–5.

    Article  CAS  PubMed  Google Scholar 

  25. Sentic M, Virgilio F, Zanut A, Manojlovic D, Arbault S, Tormen M, et al. Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal Bioanal Chem. 2016;408:7085–94.

    Article  CAS  PubMed  Google Scholar 

  26. Bist I, Bhakta S, Jiang D, Keyes TE, Martin A, Forster RJ, et al. Evaluating metabolite-related DNA oxidation and adduct damage from aryl amines using a micro fl uidic ECL array. Anal Chem. 2017;89:12441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu L, Li Y, Wu S, Liu X, Su B. Imaging latent fingerprints by electrochemiluminescence. Angew Chem Int Ed. 2012;51:8068–72.

    Article  CAS  Google Scholar 

  28. Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc. 2009;131:6088–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kadimisetty K, Malla S, Sardesai NP, Joshi AA, Faria RC, Lee NH, et al. Automated multiplexed ecl immunoarrays for cancer biomarker proteins. Anal Chem. 2015;87:4472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kadimisetty K, Mosa IM, Malla S, Satterwhite-Warden JE, Kuhns TM, Faria RC, et al. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron. 2016;77:188–93.

    Article  CAS  PubMed  Google Scholar 

  31. Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. nanoscale electrochemical mapping. Anal Chem. 2018;91:84–108.

    Article  CAS  PubMed  Google Scholar 

  32. Fan FRF, Bard AJ. Observing single nanoparticle collisions by electrogenerated chemiluminescence amplification. Nano Lett. 2008;8:1746–9.

    Article  CAS  PubMed  Google Scholar 

  33. Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc. 2009;131:937–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wilson AJ, Marchuk K, Willets KA. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes. Nano Lett. 2015;15:6110–5.

    Article  CAS  PubMed  Google Scholar 

  35. Pan S, Liu J, Hill CM. Observation of local redox events at individual au nanoparticles using electrogenerated chemiluminescence microscopy. J Phys Chem C. 2015;119:27095–103.

    Article  CAS  Google Scholar 

  36. Xu J, Huang P, Qin Y, Jiang D, Chen HY. Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal Chem. 2016;88:4609–12.

    Article  CAS  PubMed  Google Scholar 

  37. Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, et al. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis. J Am Chem Soc. 2017;139:16830–7.

    Article  CAS  PubMed  Google Scholar 

  38. Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, et al. Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc. 2018;140:14753–−14760.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang X, Wang H, Yuan R, Chai Y. Functional three-dimensional porous conductive polymer hydrogels for sensitive electrochemiluminescence in situ detection of H2O2Released from live cells. Anal Chem. 2018;90:8462–9.

    Article  CAS  PubMed  Google Scholar 

  40. Liu G, Ma C, Jin BK, Chen Z, Zhu JJ. Direct electrochemiluminescence imaging of a single cell on a chitosan film modified electrode. Anal Chem. 2018;90:4801–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou J, Ma G, Chen Y, Fang D, Jiang D, Chen HY. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal Chem. 2015;87:8138–43.

    Article  CAS  PubMed  Google Scholar 

  42. Jie G, Yuan J. Novel magnetic Fe 3O 4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem. 2012;84:2811–7.

    Article  CAS  PubMed  Google Scholar 

  43. Valenti G, Rampazzo E, Bonacchi S, Petrizza L, Marcaccio M, Montalti M, et al. Variable doping induces mechanism swapping in electrogenerated chemiluminescence of Ru (bpy)32+ Core − Shell silica nanoparticles. J Am Chem Soc. 2016;138:15935–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We thank the University of Bologna, Italian Ministero dell’Istruzione, Università della Ricerca (FIRB RBAP11C58Y, PRIN-2010N3T9M4), FARB, Fondazione Cassa di Risparmio in Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Valenti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanut, A., Fiorani, A., Rebeccani, S. et al. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem 411, 4375–4382 (2019). https://doi.org/10.1007/s00216-019-01761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01761-x

Keywords

Navigation