Kehoe MJ, Chun KP, Baulch HM. Who smells? Forecasting taste and odor in a drinking water reservoir. Environ Sci Technol. 2015;49:10984–92. https://doi.org/10.1021/acs.est.5b00979.
Article
CAS
PubMed
Google Scholar
McGuire MJ. Off-flavor as the consumer’s measure of drinking water safety. Water Sci Technol. 1995;31:1–8. https://doi.org/10.1016/0273-1223(95)00448-V.
Article
CAS
Google Scholar
Jüttner F, Watson SB. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol. 2007;73:4395–406. https://doi.org/10.1128/AEM.02250-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson SB. Aquatic taste and odor: a primary signal of drinking-water integrity. J Toxicol Environ Heal - Part A. 2004;67:1779–95. https://doi.org/10.1080/15287390490492377.
Article
CAS
Google Scholar
Asquith E, Evans C, Dunstan RH, Geary P, Cole B. Distribution, abundance and activity of geosmin and 2-methylisoborneol-producing Streptomyces in drinking water reservoirs. Water Res. 2018;145:30–8. https://doi.org/10.1016/j.watres.2018.08.014.
Article
CAS
PubMed
Google Scholar
Young WF, Horth H, Crane R, Ogden T, Arnott M. Taste and odour threshold concentrations of potential potable water contaminants. Water Res. 1996;30:331–40. https://doi.org/10.1016/0043-1354(95)00173-5.
Article
CAS
Google Scholar
Peter A, Köster O, Schildknecht A, von Gunten U. Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. Water Res. 2009;43:2191–200. https://doi.org/10.1016/j.watres.2009.02.016.
Article
CAS
PubMed
Google Scholar
Fontana A, Rodríguez I, Cela R. Accurate determination of 3-alkyl-2-methoxypyrazines in wines by gas chromatography quadrupole time-of-flight tandem mass spectrometry following solid-phase extraction and dispersive liquid–liquid microextraction. J Chromatogr A. 2017;1515:30–6. https://doi.org/10.1016/j.chroma.2017.07.085.
Article
CAS
PubMed
Google Scholar
Siegmund B, Pöllinger-Zierler B. Odor thresholds of microbially induced off-flavor compounds in apple juice. J Agric Food Chem. 2006;54:5984–9. https://doi.org/10.1021/jf060602n.
Article
CAS
PubMed
Google Scholar
Feltrer R, Álvarez-Rodríguez ML, Barreiro C, Godio RP, Coque JJR. Characterization of a novel 2,4,6-trichlorophenol-inducible gene encoding chlorophenol O-methyltransferase from Trichoderma longibrachiatum responsible for the formation of chloroanisoles and detoxification of chlorophenols. Fungal Genet Biol. 2010;47:458–67. https://doi.org/10.1016/j.fgb.2010.02.002.
Article
CAS
PubMed
Google Scholar
Park N, Lee Y, Lee S, Cho J. Removal of taste and odor model compound (2,4,6-trichloroanisole) by tight ultrafiltration membranes. Desalination. 2007;212:28–36. https://doi.org/10.1016/j.desal.2006.10.002.
Article
CAS
Google Scholar
Griffiths NM. Sensory properties of the chloro-anisoles. Chem Senses. 1974;1:187–95.
Article
CAS
Google Scholar
Wang C, Zou P, Zhang T, Li H, Yang Z. Simultaneous determination of haloanisoles and halophenols in water using in situ acylation combined with solid-phase microextraction with gas chromatography and mass spectrometry. J Sep Sci. 2017;40:514–23. https://doi.org/10.1002/jssc.201600863.
Article
CAS
PubMed
Google Scholar
Taihu L, Chen J, Xie P, Ma Z, Niu Y, Tao M, et al. A systematic study on spatial and seasonal patterns of eight taste and odor compounds with relation to various biotic and abiotic parameters in Gonghu Bay of Lake Taihu, China. Sci Total Environ. 2010;409:314–25. https://doi.org/10.1016/j.scitotenv.2010.10.010.
Article
CAS
Google Scholar
Lee SM, Lee JY, Cho YJ, Kim MS, Kim YS. Determination of volatiles and carotenoid degradation compounds in red pepper fermented by Lactobacillus parabuchneri. J Food Sci. 2018;83:2083–91. https://doi.org/10.1111/1750-3841.14221.
Article
CAS
PubMed
Google Scholar
Bai X, Zhang T, Wang C, Zong D, Li H, Yang Z. Occurrence and distribution of taste and odor compounds in subtropical water supply reservoirs and their fates in water treatment plants. Environ Sci Pollut Res. 2017;24:2904–13. https://doi.org/10.1007/s11356-016-7966-5.
Article
CAS
Google Scholar
Callejón RM, Ubeda C, Ríos-Reina R, Morales ML, Troncoso AM. Recent developments in the analysis of musty odour compounds in water and wine: a review. J Chromatogr A. 2016;1428:72–85. https://doi.org/10.1016/j.chroma.2015.09.008.
Article
CAS
PubMed
Google Scholar
Salemi A, Lacorte S, Bagheri H, Barceló D. Automated trace determination of earthy-musty odorous compounds in water samples by on-line purge-and-trap-gas chromatography-mass spectrometry. J Chromatogr A. 2006;1136:170–5. https://doi.org/10.1016/j.chroma.2006.09.087.
Article
CAS
PubMed
Google Scholar
Chatonnet P, Boutou S. Rapid headspace solid-phase microextraction/gas chromatographic/mass spectrometric assay for the quantitative determination of some of the main odorants causing off-flavours in wine. J Chromatogr A. 2007;1141:1–9. https://doi.org/10.1016/j.chroma.2006.11.106.
Article
CAS
PubMed
Google Scholar
Sung YH, Li TY, Da Huang S. Analysis of earthy and musty odors in water samples by solid-phase microextraction coupled with gas chromatography/ion trap mass spectrometry. Talanta. 2005;65:518–24. https://doi.org/10.1016/j.talanta.2004.07.014.
Article
CAS
PubMed
Google Scholar
Maruti A, Durán-Guerrero E, Barroso CG, Castro R. Optimization of a multiple headspace sorptive extraction method coupled to gas chromatography-mass spectrometry for the determination of volatile compounds in macroalgae. J Chromatogr A. 2018;1551:41–51. https://doi.org/10.1016/j.chroma.2018.04.011.
Article
CAS
PubMed
Google Scholar
Wu D, Duirk SE. Quantitative analysis of earthy and musty odors in drinking water sources impacted by wastewater and algal derived contaminants. Chemosphere. 2013;91:1495–501. https://doi.org/10.1016/j.chemosphere.2012.12.024.
Article
CAS
PubMed
Google Scholar
Peng S, Ding Z, Zhao L, Fei J, Xuan Z, Huang C, et al. Determination of seven odorants in purified water among worldwide brands by HS-SPME coupled to GC-MS. Chromatographia. 2014;77:729–35. https://doi.org/10.1007/s10337-014-2676-y.
Article
CAS
Google Scholar
Pinheiro PBM, Da Silva JCGE. Detection of 2,4,6-trichloroanisole in chlorinated water at nanogram per litre levels by SPME-GC-ECD. Anal Bioanal Chem. 2005;382:341–6. https://doi.org/10.1007/s00216-005-3154-z.
Article
CAS
PubMed
Google Scholar
Diaz A, Fabrellas C, Ventura F, Galceran MT. Determination of the odor threshold concentrations of chlorobrominated anisoles in water. J Agric Food Chem. 2005;53:383–7. https://doi.org/10.1021/jf049582k.
Article
CAS
PubMed
Google Scholar
Hassett AJ, Rohwer ER. Analysis of odorous compounds in water by isolation by closed-loop stripping with a multichannel silicone rubber trap followed by gas chromatography-mass spectrometry. J Chromatogr A. 1999;849:521–8. https://doi.org/10.1016/S0021-9673(99)00621-4.
Article
CAS
PubMed
Google Scholar
Zander AK, Pingert P. Membrane-based extraction for detection of tastes and odors in water. Water Res. 1997;31:301–9. https://doi.org/10.1016/S0043-1354(96)00254-0.
Article
CAS
Google Scholar
Bao ML, Barbieri K, Burrini D, Griffini O, Pantani F. Determination of trace levels of taste and odor compounds in water by microextraction and gas chromatography-ion-trap detection-mass spectrometry. Water Res. 1997;31:1719–27. https://doi.org/10.1016/S0043-1354(96)00338-7.
Article
CAS
Google Scholar
Shin HS, Ahn HS. Simple, rapid, and sensitive determination of odorous compounds in water by GC-MS. Chromatographia. 2004;59:107–13. https://doi.org/10.1111/j.1439-0523.2011.01864.x.
CAS
Article
Google Scholar
Yu S, Xiao Q, Zhu B, Zhong X, Xu Y, Su G, et al. Gas chromatography-mass spectrometry determination of earthy-musty odorous compounds in waters by two phase hollow-fiber liquid-phase microextraction using polyvinylidene fluoride fibers. J Chromatogr A. 2014;1329:45–51. https://doi.org/10.1016/j.chroma.2014.01.002.
Article
CAS
PubMed
Google Scholar
Bagheri H, Salemi A. Headspace solvent microextraction as a simple and highly sensitive sample pretreatment technique for ultra trace determination of geosmin in aquatic media. J Sep Sci. 2006;29:57–65. https://doi.org/10.1002/jssc.200500182.
Article
CAS
PubMed
Google Scholar
Ma J, Lu W, Li J, Song Z, Liu D, Chen L. Determination of geosmin and 2-methylisoborneol in water by headspace liquid-phase microextraction coupled with gas chromatography-mass spectrometry. Anal Lett. 2011;44:1544–57. https://doi.org/10.1080/00032719.2010.520384.
Article
CAS
Google Scholar
Laaks J, Jochmann MA, Schilling B, Schmidt TC. In-tube extraction of volatile organic compounds from aqueous samples: an economical alternative to purge and trap enrichment. Anal Chem. 2010;82:7641–8. https://doi.org/10.1021/ac101414t.
Article
CAS
PubMed
Google Scholar
Nakamura S, Nakamura N, Ito S. Determination of 2-methylisoborneol and geosmin in water by gas chromatography-mass spectrometry using stir bar sorptive extraction. J Sep Sci. 2001;24:674–7. https://doi.org/10.1002/1615-9314(20010801)24:8<674::AID-JSSC674>3.0.CO;2-E.
Article
CAS
Google Scholar
Ochiai N, Sasamoto K, Takino M, Yamashita S, Daishima S, Heiden A, et al. Determination of trace amounts of off-flavor compounds in drinking water by stir bar sorptive extraction and thermal desorption GC-MS. Analyst. 2001;126:1652–7. https://doi.org/10.1039/b102962m.
Article
CAS
PubMed
Google Scholar
Benanou D, Acobas F, Deroubin MR, David F, Sandra P. Analysis of off-flavors in the aquatic environment by stir bar sorptive extraction-thermal desorption-capillary GC/MS/olfactometry. Anal Bioanal Chem. 2003;376:69–77. https://doi.org/10.1007/s00216-003-1868-3.
Article
CAS
PubMed
Google Scholar
Wen Y, Ontañon I, Ferreira V, Lopez R. Determination of ppq-levels of alkylmethoxypyrazines in wine by stirbar sorptive extraction combined with multidimensional gas chromatography-mass spectrometry. Food Chem. 2018;255:235–42. https://doi.org/10.1016/j.foodchem.2018.02.089.
Article
CAS
PubMed
Google Scholar
Yu S, Xiao Q, Zhong X, Su G, Xu Y, Zhu B. Simultaneous determination of six earthy-musty smelling compounds in water by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Anal Methods. 2014;6:9152–9. https://doi.org/10.1039/c4ay01680g.
Article
CAS
Google Scholar
Langen J, Wegmann-Herr P, Schmarr HG. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal Bioanal Chem. 2016;408:6483–96. https://doi.org/10.1007/s00216-016-9767-6.
Article
CAS
PubMed
Google Scholar
Zhang N, Xu B, Qi F, Kumirska J. The occurrence of haloanisoles as an emerging odorant in municipal tap water of typical cities in China. Water Res. 2016;98:242–9. https://doi.org/10.1016/j.watres.2016.04.023.
Article
CAS
PubMed
Google Scholar
Sadoughi N, Schmidtke LM, Antalick G, Blackman JW, Steel CC. Gas chromatography-mass spectrometry method optimized using response surface modeling for the quantitation of fungal off-flavors in grapes and wine. J Agric Food Chem. 2015;63:2877–85. https://doi.org/10.1021/jf505444r.
Article
CAS
PubMed
Google Scholar
Glykioti ML, Yiantzi E, Psillakis E. Room temperature determination of earthy-musty odor compounds in water using vacuum-assisted headspace solid-phase microextraction. Anal Methods. 2016;8:8065–71. https://doi.org/10.1039/c6ay02210c.
Article
CAS
Google Scholar
Kremser A, Jochmann MA, Schmidt TC. PAL SPME Arrow - evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal Bioanal Chem. 2016;408:943–52. https://doi.org/10.1007/s00216-015-9187-z.
Article
CAS
PubMed
Google Scholar
Lan H, Rönkkö T, Parshintsev J, Hartonen K, Gan N, Sakeye M, et al. Modified zeolitic imidazolate framework-8 as solid-phase microextraction Arrow coating for sampling of amines in wastewater and food samples followed by gas chromatography-mass spectrometry. J Chromatogr A. 2017;1486:76–85. https://doi.org/10.1016/j.chroma.2016.10.081.
Article
CAS
PubMed
Google Scholar
Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang Y, Litaker RW (2017) Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc Natl Acad Sci 201619575. https://doi.org/10.1073/pnas.1619575114.
Hibbert DB. Experimental design in chromatography: a tutorial review. J Chromatogr B Anal Technol Biomed Life Sci. 2012;910:2–13. https://doi.org/10.1016/j.jchromb.2012.01.020.
Article
CAS
Google Scholar
Lorenzo-Parodi N, Kaziur W, Stojanović N, Jochmann MA, Schmidt TC. Solventless microextraction techniques for water analysis. TrAC Trends Anal Chem. 2018. https://doi.org/10.1016/j.trac.2018.11.013.
Helin A, Rönkkö T, Parshintsev J, Hartonen K, Schilling B, Läubli T, et al. Solid phase microextraction arrow for the sampling of volatile amines in wastewater and atmosphere. J Chromatogr A. 2015;1426:56–63. https://doi.org/10.1016/j.chroma.2015.11.061.
Article
CAS
PubMed
Google Scholar
Jochmann MA, Kmiecik MP, Schmidt TC. Solid-phase dynamic extraction for the enrichment of polar volatile organic compounds from water. J Chromatogr A. 2006;1115:208–16. https://doi.org/10.1016/j.chroma.2006.02.061.
Article
CAS
PubMed
Google Scholar
Kremser A, Jochmann MA, Schmidt TC. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography. Anal Bioanal Chem. 2016;408:6567–79. https://doi.org/10.1007/s00216-016-9843-y.
Article
CAS
PubMed
Google Scholar