Skip to main content
Log in

Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metabolomics quantitatively measures metabolites in a given biological system and facilitates the understanding of physiological and pathological activities. With the recent advancement of mass spectrometry (MS) technology, liquid chromatography-mass spectrometry (LC-MS) with data-independent acquisition (DIA) has been emerged as a powerful technology for untargeted metabolomics due to its capability to acquire all MS2 spectra and high quantitative accuracy. In this trend article, we first introduced the basic principles of several common DIA techniques including MSE, all ion fragmentation (AIF), SWATH, and MSX. Then, we summarized and compared the data analysis strategies to process DIA-based untargeted metabolomics data, including metabolite identification and quantification. We think the advantages of the DIA technique will enable its broad application in untargeted metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017;25(1):43–56.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88(1):524–45.

    Article  CAS  PubMed  Google Scholar 

  5. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc. 2010;5(6):1005–18.

    Article  CAS  PubMed  Google Scholar 

  6. Cai Y, Zhu Z-J. A high-throughput targeted metabolomics workflow for the detection of 200 polar metabolites in central carbon metabolism. Microbial Metabolomics. Berlin: Springer; 2019. p. 263–74.

    Google Scholar 

  7. Cai Y, Weng K, Guo Y, Peng J, Zhu Z-J. An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics. 2015;11(6):1575–86.

    Article  CAS  Google Scholar 

  8. Zhou J, Liu H, Liu Y, Liu J, Zhao X, Yin Y. Development and evaluation of a parallel reaction monitoring strategy for large-scale targeted metabolomics quantification. Anal Chem. 2016;88(8):4478–86.

    Article  CAS  PubMed  Google Scholar 

  9. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies-challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu Z-J, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, et al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc. 2013;8(3):451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51.

    Article  CAS  PubMed  Google Scholar 

  12. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14.

    Article  CAS  PubMed  Google Scholar 

  13. Zha H, Cai Y, Yin Y, Wang Z, Li K, Zhu ZJ. SWATHtoMRM: development of high-coverage targeted metabolomics method using SWATH technology for biomarker discovery. Anal Chem. 2018;90:4062–70.

    Article  CAS  PubMed  Google Scholar 

  14. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods. 2004;1:39–45.

    Article  CAS  PubMed  Google Scholar 

  15. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005;77:2187–200.

    Article  CAS  PubMed  Google Scholar 

  16. Geiger T, Cox J, Mann M. Proteomics on an orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics. 2010;9:2252–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Panchaud A, Scherl A, Shaffer SA, Haller PDV, Kulasekara HD, Miller SI, et al. PAcIFIC: how to dive deeper into the proteomics ocean. Anal Chem. 2011;81:6481–8.

    Article  CAS  Google Scholar 

  19. Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, et al. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods. 2013;10:744–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naz S, Gallart-Ayala H, Reinke SN, Mathon C, Blankley R, Chaleckis R, et al. Development of a liquid chromatography-high resolution mass spectrometry metabolomics method with high specificity for metabolite identification using all ion fragmentation acquisition. Anal Chem. 2017;89(15):7933–42.

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14(8):e8126.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hopfgartner G, Tonoli D, Varesio E. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal Bioanal Chem. 2012;402(8):2587–96.

    Article  CAS  PubMed  Google Scholar 

  23. Siegel D, Meinema AC, Permentier H, Hopfgartner G, Bischoff R. Integrated quantification and identification of aldehydes and ketones in biological samples. Anal Chem. 2014;86(10):5089–100.

    Article  CAS  PubMed  Google Scholar 

  24. Roemmelt AT, Steuer AE, Poetzsch M, Kraemer T. Liquid chromatography, in combination with a quadrupole time-of-flight instrument (LC QTOF), with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition: systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA). Anal Chem. 2014;86(23):11742–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bruderer T, Varesio E, Hopfgartner G. The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition. J Chromatogr B. 2017;1071:3–10.

    Article  CAS  Google Scholar 

  26. Zhu X, Chen Y, Subramanian R. Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem. 2014;86(2):1202–9.

    Article  CAS  PubMed  Google Scholar 

  27. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Cai Y, Guo Y, Chen F, Zhu ZJ. MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition. Anal Chem. 2016;88:8757–64.

    Article  CAS  PubMed  Google Scholar 

  29. Chen G, Walmsley S, Cheung GCM, Chen L, Cheng CY, Beuerman RW, et al. Customized consensus spectral library building for untargeted quantitative metabolomics analysis with data independent acquisition mass spectrometry and MetaboDIA workflow. Anal Chem. 2017;89:4897–906.

    Article  CAS  PubMed  Google Scholar 

  30. Bonner R, Hopfgartner G. SWATH data independent acquisition mass spectrometry for metabolomics. Trends Anal Chem. 2018. https://doi.org/10.1016/j.trac.2018.10.014.

  31. Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, et al. The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J Proteome Res. 2015;14:4359–71.

    Article  CAS  PubMed  Google Scholar 

  32. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87.

    Article  CAS  PubMed  Google Scholar 

  33. Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformat. 2010;11(1):395.

    Article  CAS  Google Scholar 

  34. Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13(9):741–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ni Y, Su M, Qiu Y, Jia W, Du X. ADAP-GC 3.0: improved peak detection and deconvolution of co-eluting metabolites from GC/TOF-MS data for metabolomics studies. Anal Chem. 2016;88(17):8802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bruderer T, Varesio E, Hidasi AO, Duchoslav E, Burton L, Bonner R, et al. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition. Anal Bioanal Chem. 2018;410(7):1873–84.

    Article  CAS  PubMed  Google Scholar 

  37. Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras AC, et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods. 2015;12(3):258–64 7 p following 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 2014;32(3):219–23.

    Article  CAS  PubMed  Google Scholar 

  39. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. BMC Bioinformat. 2010;26(7):966–8.

    Article  CAS  Google Scholar 

  40. Li Z, Li Y, Chen W, Cao Q, Guo Y, Wan N, et al. Integrating MS1 and MS2 scans in high-resolution parallel reaction monitoring assays for targeted metabolite quantification and dynamic 13C-labeling metabolism analysis. Anal Chem. 2017;89:877–85.

    Article  CAS  PubMed  Google Scholar 

  41. Broeckling CD, Heuberger AL, Prince JA, Ingelsson E, Prenni JE. Assigning precursor–product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies. Metabolomics. 2013;9(1):33–43.

    Article  CAS  Google Scholar 

  42. Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem. 2014;86(14):6812–7.

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Su B, Zeng Z, Li C, Zhao X, Lv W, et al. Ion-pair selection method for pseudotargeted metabolomics based on SWATH MS acquisition and its application in differential metabolite discovery of type 2 diabetes. Anal Chem. 2018:11401–08.

  44. Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, et al. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annu Rev Anal Chem. 2017;10(1):71–92.

    Article  CAS  Google Scholar 

  45. Zhou Z, Tu J, Zhu ZJ. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol. 2018;42:34–41.

    Article  CAS  PubMed  Google Scholar 

  46. Hong P, Bernstein W, Wei J, Lin C, Kernel-based component decomposition for glycan mixture separation using ion mobility spectrometry-MS/MS, 66th annual ASMS conference on mass spectrometry and allied topics, San Diego, CA, June 3-7; 2018.

Download references

Funding

The work has been supported by the National Natural Science Foundation of China (Grants 21575151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jiang Zhu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yin, Y. & Zhu, ZJ. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem 411, 4349–4357 (2019). https://doi.org/10.1007/s00216-019-01709-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01709-1

Keywords

Navigation