Skip to main content
Log in

Selective chiral recognition of alanine enantiomers by chiral calix[4]arene coated quartz crystal microbalance sensors

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe the synthesis of new chiral calix[4]arene derivatives having (R)-1-phenylethylamine, (S)-1-phenylethylamine, (R)-2-phenylglycinol, and (S)-2-phenylglycinol moieties, and chiral recognition studies for enantiomers of some selected α-amino acid derivatives such as alanine, phenylalanine, serine, and tryptophan using a quartz crystal microbalance (QCM). Initial experiments indicated that the highest selective chiral recognition factor was 1.42 for alanine enantiomers. The sensitivity, limit of detection, and time constant for l-alanine were calculated as 0.028 Hz/μM, 60.9 μM, and 36.2 s, respectively. The results indicated that real-time, sensitive, selective, and effective chiral recognition of alanine enantiomers was achieved with a QCM sensor coated with a chiral calix[4]arene derivative having (R)-2-phenylglycinol moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yoshio O, Eiji Y. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed. 1998;37(8):1020–43. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5.

    Article  Google Scholar 

  2. Gawley RE, Aubé J. Practical aspects of asymmetric synthesis. In: Principles of asymmetric synthesis. 2nd ed. Oxford: Elsevier; 2012. p. 63–95. https://doi.org/10.1016/B978-0-08-044860-2.00002-7.

    Chapter  Google Scholar 

  3. Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd ed. Chichester: Wiley; 2001.

    Book  Google Scholar 

  4. Gasparrini F, Pierini M, Villani C, Filippi A, Speranza M. Induced-fit in the gas phase: conformational effects on the enantioselectivity of chiral tetra-amide macrocycles. J Am Chem Soc. 2008;130(2):522–34. https://doi.org/10.1021/ja073287+.

    Article  CAS  PubMed  Google Scholar 

  5. Sambasivan S, Kim D-s, Ahn KH. Chiral discrimination of α-amino acids with a C2-symmetric homoditopic receptor. Chem Commun. 2010;46(4):541–3. https://doi.org/10.1039/B919957H.

    Article  CAS  Google Scholar 

  6. Bi Q, Dong S, Sun Y, Lu X, Zhao L. An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids. Anal Biochem. 2016;508:50–7. https://doi.org/10.1016/j.ab.2016.05.022.

    Article  CAS  PubMed  Google Scholar 

  7. Ilisz I, Péter A, Lindner W. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. Trends Anal Chem. 2016;81:11–22. https://doi.org/10.1016/j.trac.2016.01.016.

    Article  CAS  Google Scholar 

  8. Sánchez-Hernández L, Bernal JL, Nozal MJ, Toribio L. Chiral analysis of aromatic amino acids in food supplements using subcritical fluid chromatography and Chirobiotic T2 column. J Supercrit Fluids. 2016;107:519–25. https://doi.org/10.1016/j.supflu.2015.06.027.

    Article  CAS  Google Scholar 

  9. Yu X, Yao Z-P. Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry. Anal Chim Acta. 2017;981:62–70. https://doi.org/10.1016/j.aca.2017.05.026.

    Article  CAS  PubMed  Google Scholar 

  10. Tabakcı M, Tabakcı B, Yılmaz M. Design and synthesis of new chiral calix[4]arenes as liquid phase extraction agents for α-amino acid methylesters and chiral α-amines. J Incl Phenom Macrocycl Chem. 2005;53(1–2):51–6. https://doi.org/10.1007/s10847-005-0697-8.

    Article  CAS  Google Scholar 

  11. Erdemir S. Synthesis of novel chiral Schiff base and amino alcohol derivatives of calix[4]arene and chiral recognition properties. J Mol Struct. 2012;1007:235–41. https://doi.org/10.1016/j.molstruc.2011.10.053.

    Article  CAS  Google Scholar 

  12. Zhang X, Chen S, Xu P, Yu Q, Dai Z. Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination. Tetrahedron Lett. 2017;58(29):2850–5. https://doi.org/10.1016/j.tetlet.2017.06.025.

    Article  CAS  Google Scholar 

  13. Gao G, Lv C, Li Q, Ai L, Zhang J. Enantiomeric discrimination of α-hydroxy acids and N-Ts-α-amino acids by 1H NMR spectroscopy. Tetrahedron Lett. 2015;56(48):6742–6. https://doi.org/10.1016/j.tetlet.2015.10.060.

    Article  CAS  Google Scholar 

  14. Yin X, Ding J, Zhang S, Kong J. Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films. Biosens Bioelectron. 2006;21(11):2184–7. https://doi.org/10.1016/j.bios.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  15. Fu YQ, Luo JK, Nguyen NT, Walton AJ, Flewitt AJ, Zu XT, et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci. 2017;89:31–91. https://doi.org/10.1016/j.pmatsci.2017.04.006.

    Article  CAS  Google Scholar 

  16. Sayin S, Ozbek C, Okur S, Yilmaz M. Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. J Organomet Chem. 2014;771:9–13. https://doi.org/10.1016/j.jorganchem.2014.06.004.

    Article  CAS  Google Scholar 

  17. Baldini L, Sansone F, Faimani G, Massera C, Casnati A, Ungaro R. Self-assembled Chiral dimeric capsules from difunctionalized N,C-linked peptidocalix[4]arenes: scope and limitations. Eur J Org Chem. 2008;5:869–86. https://doi.org/10.1002/ejoc.200700943.

    Article  CAS  Google Scholar 

  18. Pirondini L, Dalcanale E. Molecular recognition at the gas–solid interface: a powerful tool for chemical sensing. Chem Soc Rev. 2007;36(5):695–706. https://doi.org/10.1039/B516256B.

    Article  CAS  PubMed  Google Scholar 

  19. Koshets IA, Kazantseva ZI, Shirshov YM, Cherenok SA, Kalchenko VI. Calixarene films as sensitive coatings for QCM-based gas sensors. Sensors Actuators B Chem. 2005;106(1):177–81. https://doi.org/10.1016/j.snb.2004.05.054.

    Article  CAS  Google Scholar 

  20. Miah M, Pavey KD, Gun'ko VM, Sheehan R, Cragg PJ. Observation of transient alkali metal inclusion in oxacalix[3]arenes. Supramol Chem. 2004;16(3):185–92. https://doi.org/10.1080/10610270310001644473.

    Article  CAS  Google Scholar 

  21. Wang C, He X-W, Chen L-X. A piezoelectric quartz crystal sensor array self assembled calixarene bilayers for detection of volatile organic amine in gas. Talanta. 2002;57(6):1181–8. https://doi.org/10.1016/S0039-9140(02)00193-5.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma K, Cragg P. Calixarene based chemical sensors. Chem Senses. 2011;1(9):1–18.

    CAS  Google Scholar 

  23. Hao R-Z, Song H-B, Zuo G-M, Yang R-F, Wei H-P, Wang D-B, et al. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosens Bioelectron. 2011;26(8):3398–404. https://doi.org/10.1016/j.bios.2011.01.010.

    Article  CAS  PubMed  Google Scholar 

  24. Jearanaikoon P, Prakrankamanant P, Leelayuwat C, Wanram S, Limpaiboon T, Promptmas C. The evaluation of loop-mediated isothermal amplification-quartz crystal microbalance (LAMP-QCM) biosensor as a real-time measurement of HPV16 DNA. J Virol Methods. 2016;229:8–11. https://doi.org/10.1016/j.jviromet.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  25. Karaseva N, Ermolaeva T, Mizaikoff B. Piezoelectric sensors using molecularly imprinted nanospheres for the detection of antibiotics. Sensors Actuators B Chem. 2016;225:199–208. https://doi.org/10.1016/j.snb.2015.11.045.

    Article  CAS  Google Scholar 

  26. Pei Z, Saint-Guirons J, Käck C, Ingemarsson B, Aastrup T. Real-time analysis of the carbohydrates on cell surfaces using a QCM biosensor: a lectin-based approach. Biosens Bioelectron. 2012;35(1):200–5. https://doi.org/10.1016/j.bios.2012.02.047.

    Article  CAS  PubMed  Google Scholar 

  27. Sauerbrey G. Use of quartz vibrator for weighing thin layers and as a microbalance. Z Phys. 1959;155:206–22. https://doi.org/10.1007/BF01337937.

  28. Fakhrullin RF, Vinter VG, Zamaleeva AI, Matveeva MV, Kourbanov RA, Temesgen BK, et al. Quartz crystal microbalance immunosensor for the detection of antibodies to double-stranded DNA. Anal Bioanal Chem. 2007;388(2):367–75. https://doi.org/10.1007/s00216-007-1230-2.

    Article  CAS  PubMed  Google Scholar 

  29. Lee S-W, Hinsberg WD, Kanazawa KK. Determination of the viscoelastic properties of polymer films using a compensated phase-locked oscillator circuit. Anal Chem. 2002;74(1):125–31. https://doi.org/10.1021/ac0108358.

    Article  CAS  PubMed  Google Scholar 

  30. Arnau A, Sogorb T, Jiménez Y. Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Rev Sci Instrum. 2002;73(7):2724–37. https://doi.org/10.1063/1.1484254.

    Article  CAS  Google Scholar 

  31. Nwankwo E, Durning CJ. Impedance analysis of thickness-shear mode quartz crystal resonators in contact with linear viscoelastic media. Rev Sci Instrum. 1998;69(6):2375–84. https://doi.org/10.1063/1.1148963.

    Article  CAS  Google Scholar 

  32. Su X-L, Li Y. A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance. Biosens Bioelectron. 2005;21(6):840–8. https://doi.org/10.1016/j.bios.2005.01.021.

    Article  CAS  PubMed  Google Scholar 

  33. Singh AK, Singh M. Molecularly imprinted Au-nanoparticle composite-functionalized EQCM sensor for l-serine. J Electroanal Chem. 2016;780:169–75. https://doi.org/10.1016/j.jelechem.2016.09.021.

    Article  CAS  Google Scholar 

  34. Mirmohseni A, Shojaei M, Farbodi M. Application of a quartz crystal nanobalance to the molecularly imprinted recognition of phenylalanine in solution. Biotechnol Bioprocess Eng. 2008;13(5):592–7. https://doi.org/10.1007/s12257-008-0028-1.

    Article  CAS  Google Scholar 

  35. Nakanishi T, Yamakawa N, Asahi T, Osaka T, Ohtani B, Uosaki K. Enantioselective adsorption of phenylalanine onto self-assembled monolayers of 1,1‘-binaphthalene-2,2‘-dithiol on gold. J Am Chem Soc. 2002;124(5):740–1. https://doi.org/10.1021/ja012084x.

    Article  CAS  PubMed  Google Scholar 

  36. Bodenhofer K, Hierlemann A, Seemann J, Gauglitz G, Koppenhoefer B, Gopel W. Chiral discrimination using piezoelectric and optical gas sensors. Nature. 1997;387(6633):577–80.

    Article  CAS  Google Scholar 

  37. Yılmaz A, Tabakcı B, Tabakcı M. New diamino derivatives of p-tert-butylcalix[4]arene for oxyanion recognition: synthesis and complexation studies. Supramol Chem. 2009;21(6):435–41. https://doi.org/10.1080/10610270802165969.

    Article  CAS  Google Scholar 

  38. Gutsche CD, Dhawan B, No KH, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc. 1981;103(13):3782–92. https://doi.org/10.1021/ja00403a028.

    Article  CAS  Google Scholar 

  39. Ovsyannikov A, Solovieva S, Antipin I, Ferlay S. Coordination polymers based on calixarene derivatives: structures and properties. Coord Chem Rev. 2017;352(Suppl C):151–86. https://doi.org/10.1016/j.ccr.2017.09.004.

    Article  CAS  Google Scholar 

  40. Kostyukevych KV, Khristosenko RV, Pavluchenko AS, Vakhula AA, Kazantseva ZI, Koshets IA, et al. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors Actuators B Chem. 2016;223:470–80. https://doi.org/10.1016/j.snb.2015.09.123.

    Article  CAS  Google Scholar 

  41. Nikoleli G-P, Nikolelis DP, Evtugyn G, Hianik T. Advances in lipid film based biosensors. Trends Anal Chem. 2016;79:210–21. https://doi.org/10.1016/j.trac.2016.01.021.

    Article  CAS  Google Scholar 

  42. Temel F, Özçelik E, Türe AG, Tabakcı M. Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media. Appl Surf Sci. 2017;412:238–51. https://doi.org/10.1016/j.apsusc.2017.03.258.

    Article  CAS  Google Scholar 

  43. Su WC, Zhang WG, Zhang S, Fan J, Yin X, Luo ML, et al. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens Bioelectron. 2009;25(2):488–92. https://doi.org/10.1016/j.bios.2009.06.040.

    Article  CAS  PubMed  Google Scholar 

  44. Temel F, Tabakcı M. Calix[4]arene coated QCM sensors for detection of VOC emissions: methylene chloride sensing studies. Talanta. 2016;153:221–7. https://doi.org/10.1016/j.talanta.2016.03.026.

    Article  CAS  PubMed  Google Scholar 

  45. Long GL, Winefordner JD. Limit of detection a closer look at the IUPAC definition. Anal Chem. 1983;55(7):712A–24A. https://doi.org/10.1021/ac00258a724.

    Article  CAS  Google Scholar 

  46. Koshets IA, Kazantseva ZI, Belyaev AE, Kalchenko VI. Sensitivity of resorcinarene films towards aliphatic alcohols. Sensors Actuators B Chem. 2009;140(1):104–8. https://doi.org/10.1016/j.snb.2009.04.014.

    Article  CAS  Google Scholar 

  47. Fu Y, Finklea HO. Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers. Anal Chem. 2003;75(20):5387–93. https://doi.org/10.1021/ac034523b.

    Article  CAS  PubMed  Google Scholar 

  48. Grate JW, Snow A, Ballantine DS, Wohltjen H, Abraham MH, McGill RA, et al. Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Anal Chem. 1988;60(9):869–75. https://doi.org/10.1021/ac00160a010.

    Article  CAS  Google Scholar 

  49. Meng R, Kang J. Determination of the stereoisomeric impurities of sitafloxacin by capillary electrophoresis with dual chiral additives. J Chromatogr A. 2017;1506:120–7. https://doi.org/10.1016/j.chroma.2017.05.010.

    Article  CAS  PubMed  Google Scholar 

  50. Li Z-T, Ji G-Z, Zhao C-X, Yuan S-D, Ding H, Huang C, et al. Self-assembling calix[4]arene [2]catenanes. Preorganization, conformation, selectivity, and efficiency. J Org Chem. 1999;64(10):3572–84. https://doi.org/10.1021/jo9824100.

    Article  CAS  PubMed  Google Scholar 

  51. Jeong H, Park K, Yoo J-C, Hong J. Structural heterogeneity in polymeric nitric oxide donor nanoblended coatings for controlled release behaviors. RSC Adv. 2018;8(68):38792–800. https://doi.org/10.1039/C8RA07707J.

    Article  CAS  Google Scholar 

  52. Häkkinen H. The gold–sulfur interface at the nanoscale. Nat Chem. 2012;4:443. https://doi.org/10.1038/nchem.1352.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Yu Q, Lu W, Chen S, Dai Z. Synthesis of new chiral fluorescent sensors and their applications in enantioselective discrimination. Tetrahedron Lett. 2017;58(41):3924–7. https://doi.org/10.1016/j.tetlet.2017.08.077.

    Article  CAS  Google Scholar 

  54. Memon FN, Memon S. Sorption and desorption of basic dyes from industrial wastewater using calix[4]arene based impregnated material. Sep Sci Technol. 2014;50(8):1135–46. https://doi.org/10.1080/01496395.2014.965831.

    Article  CAS  Google Scholar 

  55. Mutihac L, Lee JH, Kim JS, Vicens J. Recognition of amino acids by functionalized calixarenes. Chem Soc Rev. 2011;40(5):2777–96. https://doi.org/10.1039/C0CS00005A.

    Article  CAS  PubMed  Google Scholar 

  56. Yuan Y, Lee TR. Contact angle and wetting properties. In: Bracco G, Holst B, editors. Surface science techniques. Berlin: Springer; 2013. p. 3–34. https://doi.org/10.1007/978-3-642-34243-1_1.

    Chapter  Google Scholar 

  57. Mannan S, Fakhru'l-Razi A, Alam MZ. Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. J Environ Sci. 2007;19(1):23–8. https://doi.org/10.1016/S1001-0742(07)60004-7.

    Article  CAS  Google Scholar 

  58. Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol. 2004;145(1):46–58. https://doi.org/10.1016/S0924-0136(03)00861-6.

    Article  CAS  Google Scholar 

  59. Körbahti BK, Tanyolaç A. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology. J Hazard Mater. 2008;151(2–3):422–31. https://doi.org/10.1016/j.jhazmat.2007.06.010.

    Article  CAS  PubMed  Google Scholar 

  60. Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, et al. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater. 2008;154(1):694–702. https://doi.org/10.1016/j.jhazmat.2007.10.114.

    Article  CAS  PubMed  Google Scholar 

  61. Silva JP, Sousa S, Gonçalves I, Porter JJ, Ferreira-Dias S. Modelling adsorption of acid orange 7 dye in aqueous solutions to spent brewery grains. Sep Purif Technol. 2004;40(2):163–70. https://doi.org/10.1016/j.seppur.2004.02.006.

    Article  CAS  Google Scholar 

  62. Lee K, Hamid S. Simple response surface methodology: investigation on advance photocatalytic oxidation of 4-chlorophenoxyacetic acid using UV-active ZnO photocatalyst. Materials. 2015;8(1):339–54. https://doi.org/10.3390/ma8010339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Technical Research Council of Turkey (TUBITAK grant number 115Z249) and the Research Foundation of Selçuk University (SUBAP grant number 16401003), Konya, Turkey, and for financial support of this work produced from FT’s Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tabakci.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.17 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temel, F., Erdemir, S., Tabakci, B. et al. Selective chiral recognition of alanine enantiomers by chiral calix[4]arene coated quartz crystal microbalance sensors. Anal Bioanal Chem 411, 2675–2685 (2019). https://doi.org/10.1007/s00216-019-01705-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01705-5

Keywords

Navigation