Analytical and Bioanalytical Chemistry

, Volume 411, Issue 10, pp 1935–1941 | Cite as

A rapid bioanalytical tool for detection of sequence-specific circular DNA and mitochondrial DNA point mutations

  • Yuqian Zhang
  • Ahmet Kaynak
  • Taosheng Huang
  • Leyla EsfandiariEmail author


Mutations in mitochondrial DNA (mtDNA) have been an essential cause of numerous diseases, making their identification critically important. The majority of mtDNA screening techniques require polymerase chain reaction (PCR) amplification, enzymatic digestion, and denaturation procedures, which are laborious and costly. Herein, we developed a sensitive PCR-free electrokinetic-based sensor combined with a customized bis-peptide nucleic acid (bis-PNA) and gamma-PNA (γ-PNA) probes immobilized on beads, for the detection of mtDNA point mutations and sequence-specific supercoiled plasmid DNA at the picomolar range. The probes are capable of invading the double-stranded circular DNA and forming a stable triplex structure. Thus, this method can significantly reduce the sample preparation and omit the PCR amplification steps prior to sensing. Further, this bioanalytical tool can open up a new paradigm in clinical settings for the screening of double-stranded circular nucleic acids with a single-base mismatch specificity in a rapid and sensitive manner.


Bis-PNA Gamma-PNA Mitochondrial DNA Circular double-stranded DNA Electrokinetic sensor 



The authors thank Shiyu Luo from Dr. Huang’s group for the generous help on mitochondrial DNA preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Andersson GE, Karlberg O, Canbäck B, Kurland CG. On the origin of mitochondria: a genomics perspective. Philos Trans Royal Soc B Biol Sci. 2003;358(1429):165–79.Google Scholar
  2. 2.
    Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389.CrossRefGoogle Scholar
  3. 3.
    Parr RL, Martin LH. Mitochondrial and nuclear genomics and the emergence of personalized medicine. Hum Genomics. 2012;6(1):3.CrossRefGoogle Scholar
  4. 4.
    Melton T, Nelson K. Forensic mitochondrial DNA analysis: two years of commercial casework experience in the United States. Croat Med J. 2001;42(3):298–303.Google Scholar
  5. 5.
    Palo JU, Hedman M, Söderholm N, Sajantila A. Repatriation and identification of Finnish World War II soldiers. Croat Med J. 2007;48(4):528.Google Scholar
  6. 6.
    Meierhofer D, Mayr JA, Ebner S, Sperl W, Kofler B. Rapid screening of the entire mitochondrial DNA for low-level heteroplasmic mutations. Mitochondrion. 2005;5(4):282–96.CrossRefGoogle Scholar
  7. 7.
    Wong L-JC, Chen T-J, Tan D-J. Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis. Electrophoresis. 2004;25(15):2602–10.CrossRefGoogle Scholar
  8. 8.
    Cassandrini D, Calevo MG, Tessa A, Manfredi G, Fattori F, Meschini MC, et al. A new method for analysis of mitochondrial DNA point mutations and assess levels of heteroplasmy. Biochem Bioph Res Co. 2006;342(2):387–93.CrossRefGoogle Scholar
  9. 9.
    Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet. 2010;87(2):237–49.CrossRefGoogle Scholar
  10. 10.
    Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, et al. The human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res. 2004;14(5):812–9.CrossRefGoogle Scholar
  11. 11.
    Taylor P, Manage DP, Helmle KE, Zheng Y, Glerum DM, Backhouse CJ. Analysis of mitochondrial DNA in microfluidic systems. J Chromatogr B. 2005;822(1):78–84.CrossRefGoogle Scholar
  12. 12.
    Shi M, Zheng J, Tan Y, Tan G, Li J, Li Y, et al. Ultrasensitive detection of single nucleotide polymorphism in human mitochondrial DNA utilizing ion-mediated cascade surface-enhanced Raman spectroscopy amplification. Anal Chem. 2015;87(5):2734–40.CrossRefGoogle Scholar
  13. 13.
    Sun L, Hu N, Peng J, Chen L, Weng J. Ultrasensitive detection of mitochondrial DNA mutation by graphene oxide/DNA hydrogel electrode. Adv Funct Mater. 2014;24(44):6905–13.CrossRefGoogle Scholar
  14. 14.
    Song Y, Gyarmati P, Araújo AC, Lundeberg J, Brumer H, Ståhl PL. Visual detection of DNA on paper chips. Anal Chem. 2014;86(3):1575–82.CrossRefGoogle Scholar
  15. 15.
    Chang C-M, Chiu L-F, Wang P-W, Shieh D-B, Lee G-B. A microfluidic system for fast detection of mitochondrial DNA deletion. Lab Chip. 2011;11(16):2693–700.CrossRefGoogle Scholar
  16. 16.
    Chang C-M, Chiu L-F, Wei Y-H, Shieh D-B, Lee G-B. Integrated three-dimensional system-on-chip for direct quantitative detection of mitochondrial DNA mutation in affected cells. Biosens Bioelectron. 2013;48:6–11.CrossRefGoogle Scholar
  17. 17.
    Esfandiari L, Monbouquette HG, Schmidt JJ. Sequence-specific nucleic acid detection from binary pore conductance measurement. J Am Chem Soc. 2012;134(38):15880–6.CrossRefGoogle Scholar
  18. 18.
    Esfandiari L, Lorenzini M, Kocharyan G, Monbouquette HG, Schmidt JJ. Sequence-specific DNA detection at 10 fM by electromechanical signal transduction. Anal Chem. 2014;86(19):9638–43.CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Rana A, Stratton Y, Czyzyk-Krzeska MF, Esfandiari L. Sequence-specific detection of MicroRNAs related to clear cell renal cell carcinoma at fM concentration by an electroosmotically driven nanopore-based device. Anal Chem. 2017;89(17):9201–8.CrossRefGoogle Scholar
  20. 20.
    Esfandiari L, Wang S, Wang S, Banda A, Lorenzini M, Kocharyan G, et al. PCR-independent detection of bacterial species-specific 16S rRNA at 10 fM by a pore-blockage sensor. Biosensors. 2016;6(3):37.CrossRefGoogle Scholar
  21. 21.
    Green MR, Sambrook J, Sambrook J. Molecular cloning: a laboratory manual, 4th ed. New York: Cold Spring Harbor Laboratory Press; 2012. p.1233–37.Google Scholar
  22. 22.
    Smith MF, Delbary-Gossart S. Electrophoretic mobility shift assay (EMSA). In: M S, editor. Colorectal Cancer: methods and protocols. Totowa: Humana Press; 2001. p. 249–57.Google Scholar
  23. 23.
    Nielsen PE. Targeting double-stranded DNA with peptide nucleic acid (PNA). Curr Med Chem. 2000;8(5):545–50.Google Scholar
  24. 24.
    Kuhn H, Sahu B, Rapireddy S, Ly DH, Frank-Kamenetskii MD. Sequence specificity at targeting double-stranded DNA with a γ-PNA oligomer modified with guanidinium G-clamp nucleobases. Aritf DNA PNA XNA. 2010;1(1):45–53.CrossRefGoogle Scholar
  25. 25.
    Zelphati O, Liang X, Hobart P, Felgner PL. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum Gene Ther. 1999;10(1):15–24.CrossRefGoogle Scholar
  26. 26.
    Chen J, Peterson KR, Iancu-Rubin C, Bieker JJ. Design of embedded chimeric peptide nucleic acids that efficiently enter and accurately reactivate gene expression in vivo. Proc Natl Acad Sci. 2010;107(39):16846–51.CrossRefGoogle Scholar
  27. 27.
    Coull J, Deuholm KL, Christensen L, Egholm M, Buchardt O, Nielsen PE. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 1995;23(2):217–22.CrossRefGoogle Scholar
  28. 28.
    Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem. 2011;76(14):5614–27.CrossRefGoogle Scholar
  29. 29.
    Qiu Y, Lin C-Y, Hinkle P, Plett TS, Yang C, Chacko JV, et al. Highly charged particles cause a larger current blockage in micropores compared to neutral particles. ACS Nano. 2016;10(9):8413–22.CrossRefGoogle Scholar
  30. 30.
    Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226(2):274–86.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuqian Zhang
    • 1
  • Ahmet Kaynak
    • 2
  • Taosheng Huang
    • 3
  • Leyla Esfandiari
    • 1
    • 2
    Email author
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Human GeneticsCincinnati Children’s HospitalCincinnatiUSA

Personalised recommendations